
A Graph-based Developmental Swarm
Representation & Algorithm

Sebastian von Mammen1, David Phillips1, Timothy Davison1, and Christian
Jacob1,2

1 Dept. of Computer Science, University of Calgary, Canada
2 Dept. of Biochemistry and Molecular Biology, University of Calgary, Canada

Abstract. Modelling natural processes requires the implementation of
an expressive representation of the involved entities and their inter-
actions. We present swarm graph grammars (SGGs) as a bio-inspired
modelling framework that integrates aspects of formal grammars, graph-
based representation and multi-agent simulation. In SGGs, the substitu-
tion of subgraphs that represent locally defined agent interactions drive
the computational process of the simulation. The generative character
of formal grammars is translated into an agent’s metabolic interactions,
i.e. creating or removing agents from the system. Utilizing graphs to
describe interactions and relationships between pairs or sets of agents
offers an easily accessible way of modelling biological phenomena. Prop-
erty graphs emerge through the application of local interaction rules; we
use these graphs to capture various aspects of the interaction dynamics
at any given step of a simulation.

1 Introduction

We are interested in modelling complex biological systems at various levels of
scale, i.e. from the biomolecular level [33] to cells [13] to systems [15], etc. Dif-
ferent levels of resolution often require different computational techniques, such
as differential equation solvers to compute physics or fluid dynamics, or en-
gines that execute high-level agent behaviours that implement rich interaction
policies and complex strategies [39]. Independent of the specific computational
approaches that drive the simulation processes, they all rely on state changes,
the principle of digital computation. Furthermore, a system’s state determines
the introduced changes, probabilistically or deterministically. This idea is em-
phasized in numerous computational representations such as Markov chains [1]
or cellular automata [38]. The state of a system is generally understood as the
states of all its subsystems including their interrelations. Consequently, states
and relations are interchangeable terms that provide the condition for change,
or the antecedent for a consequent in a simple If-then rule. A set of probabilistic
rules (like in Markov chain systems) works well to represent the activities of
decentralized, self-organizing swarm agents [3–5, 15, 14], including swarm-based
developmental systems [25, 24].



2

Rule-based swarm systems seem to be a good fit to capture biological models.
However, there are several hurdles that make it hard to deploy swarm models
in fields outside of computer science. (1) The predicates and actions that drive
the simulations—e.g. the detection of a chemical signal or the deposition of a
particle—depend on the modelling domains and are usually re-implemented for
different experiments. Still, many of these operations can be abstracted, para-
metrically adjusted and reused in different contexts. The integration of these
operations into a rule-based formalism also makes it possible to utilize func-
tionality from various computational engines such as physics engines or general
differential equation solvers within one modelling framework. (2) Depending on
the degree of specificity of a rule’s condition and its associated actions, a the-
oretically simple interaction can result in an over-complicated representation.
A graphical description of the predicates and the associated actions can amend
this issue. (3) As swarm simulations often exhibit complex behaviours, little
details—for example the order of execution and the discretization steps in a
simulation—can greatly influence the outcome. Therefore, we think it is crucial
to design models based on a unified algorithmic scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the
challenges discussed above. SGGs provide a graphical, rule-based description
language to specify swarm agents and a generalized algorithmic framework for
the simulation of complex systems. Fundamental operations such as creation
or deletion of programmatic objects, as provided by formal grammars, are part
of the SGG syntax. Through SGGs we can capture (metabolic) functions at
multiple biological scales, i.e. the processes of secretion and diffusion [37], or
consumption/removal and production/construction [20], respectively. As a con-
sequence of the graph-based syntax, SGGs capture the simulation in a global
graph at each computational step. Thereby, the continuous re-shaping of an in-
teraction topology of a dynamic system is traced and interdependencies that
emerge over the course of a simulation are graphically represented.

The remainder of this paper is organized as follows. In Section 2, immediately
relevant work in the respective areas of research is presented. Section 3 details
swarm graph grammars (SGGs) and their constituents, i.e. swarm individuals,
graph grammatical rules, and a general SGG algorithm. Section 4 shows how
the SGG formalism is applied in a step by step manner to retrace a simple boid
simulation, wasp nest construction, and directed cell growth and proliferation.
We conclude with a summary and an outlook on possible future work.

2 Related Work

Cellular automata (CAs) can be considered the first computational develop-
mental models [28]. CAs revolve around state-based interactions of individuals
given a fixed interaction topology. However, in the emerging discipline of compu-
tational developmental systems, the focus shifted towards constructive expres-
siveness and thus overshadowed the idea of individual-based modelling. In this



3

section, we briefly review the emergence of CDMs and demonstrate their reunion
with agent-based modelling.

2.1 Complex CDMs

Giavitto et al. summarize several approaches to computational developmental
models [10]. The most simple ones are considered to be dynamical systems with
sets of state variables determining their global states. Structured dynamical sys-
tems are more complex; they are dynamic systems that can be divided into
subsystems. Finally, there are dynamical systems with dynamical structures, ab-
breviated as (DS)2-systems, for instance a “developing multi-cellular organism”
[12]. In addition, Giavitto et al. describe developmental models as tuples of
topology and formalism. L-systems [22], for instance, describe how individual
elements of sequences are substituted in parallel. Group-based data fields (GBF)
[34], on the other hand, operate on sets of units that are connected with a ho-
mogeneous, fixed topology not unlike cellular automata [28]. Map L-systems [2],
similar to random boolean networks (RBNs) [16], promote combinatorial topolo-
gies on the interacting, or growing, data structures. There are also formalisms
that explicitly integrate the topology of the modelled systems, such as membrane
computing (MC), or P systems [29]. P systems draw their inspiration from mem-
brane structures of cells, neural cells and tissues. In a more generalized fashion,
graph grammars [9] are a means to integrate topological information into any
kind of developmental model. Examples are multiscale tree graphs (MTGs) and
the modèle géneral de simulation (MGS) that represent changes of topological
collections of units by transformation paths on a symbolic notation [11].

2.2 Graph-based CDMs

Kniemeyer et al. have developed relational growth grammars (RGGs) which
promise, like MGS, to be a universally applicable representation of CDMs [19].
They use RGGs as extensions of parametric L-systems with object-oriented,
rule-based, procedural features. In fact, modelling CDMs by graph grammars,
like in RGGs, allows for the expression of all developmental data structures
commonly used in the computational sciences: multisets, strings, axial trees,
and relational structures (edge-labeled directed graphs). Graph grammar-based
CDMs can therefore be considered as a universal modelling language, able to
simulate standard L-systems, artificial chemistries and ecological systems alike.
Kniemeyer et al. successfully applied the RGG model to grow multi-scale mod-
els of plants integrating their structure and function [18], and, recently, to grow
architectural models [17]. They also suggested that RGGs could support agent-
based modelling—by interpreting nodes as agents, edges as inter-agent relations,
and by driving their interactions through sub-graph substitutions [21].

Almost 20 years before Kniemeyer presented RGGs, Culik et al. had extended
L-systems with the means to describe plants through graph structures and their
growth through graph grammatical substitutions, which were later on referred
to as graph L-systems [6]. Shortly afterwards, Nagl investigated the relationship



4

between graph grammars and graph L-systems, concluding that graph gram-
mars can be reduced to graph L-systems and vice versa [27]: identical graphs
can be achieved by either sequential graph grammar productions or by parallel
subgraph substitutions as realized in graph L-systems. About another decade
later, Lindenmayer argued that relying on maps instead of graphs bears many
advantages, e.g. a clear method for mapping between the abstract representation
and the natural, growing structures and better performance due to the avoidance
of transformations of the representations [23].

Recently, Tomita et al. have presented graph rewriting automata [36], in
which lattice-based CAs evolve into complex networks through the application
of production rules that change local connectivities. Sayama et al. went one step
further and considered the local states of a CA to inform the development of
generative network automata (GNA) [32].

2.3 Swarm-based CDMs

Developmental systems can be simulated by means of agent-based, decentralized
models that incorporate diffusion of molecular signals paired with particular
protein or cell behaviours [31]. A generic formalism for agent-based models was
provided by Denzinger et al. [7, 8] in which an agent is represented as a quadruple
Ag = (Sit, Act,Dat, fAg). An agent Ag can find itself in any of the situations
expressed in Sit. It can perform the actions described by the set Act. Its internal
data areas, i.e. local variables or memory cells, are determined by the set of
possible valuesDat. Based on the perceived situation and its internal data values,
the agent determines the next action through a decision function fAg : Sit ×
Dat → Act. This representation is very expressive and follows the descriptive
methodology of many natural sciences in which the principle of local cause and
effect leads to associated emergent phenomena of interest.

Based on these ideas, we have introduced swarm grammars (SGs) that merged
L-systems with an agent-based modelling approach [24]. In swarm grammars, de-
centralized swarm agents, or individuals, have the ability to perceive and act in
accordance with Denzinger et al.’s agent definition. In particular, SG individ-
uals can react to their local environment, differentiate, reproduce, and create
structures by depositing construction elements. Albeit the fact that SGs merge
several instrumental biological concepts of developmental, non-linear interaction
systems, they do not provide a unified, easy-to-use representation and algorithm
that allows for systematic deployment in other scientific disciplines (as discussed
in Section 1).

3 Swarm Graph Grammars

We present swarm graph grammars as a unified modelling and simulation frame-
work for swarm-based systems that addresses the challenges outlined in Section
1, and provides a unified, graphical, rule-based modelling language for swarm in-
dividuals and a generalized simulation algorithm. The graphical description ren-
ders model dynamics more tangible and translates local interactions into global,



5

continuously changing interaction networks. We believe that investigations into
the development of these networks, in turn, could reveal quantifiable measures
about emergent global phenomena. We address Lindenmayer’s concerns about
the inefficiency of graph-based CDMs by a minimalist subgraph matching pro-
cedure that only considers star networks of depth 1 around the corresponding,
active reference agent.

3.1 Representation
predicateX

predicate Z
(>6)

p = 0.3

Δt = 4
predicateY

predicateX
actionJ

actionK

initialize

Fig. 1. An SGG rule that queries the
reference node itself, other individuals
and sets of interaction candidates, to in-
teract with them, delete some and to ini-
tialize a new node.

An SGG agent’s behaviour is de-
scribed by a set of rules (Figure 1).
Each rule tests a set of predicates
(solid edges on the left-hand side)
and executes a set of actions (dashed
edges on the right-hand side) in re-
spect to the acting agent itself (ref-
erence node) or other agents. Nodes
represent individual agents or sets of
agents. In Figure 1, the acting agent
is displayed as an orange node with a black border. Other agents or agent groups
are depicted as grey nodes. The application of the rule is associated with a fre-
quency and a probability. Sets of predicates can attempt to identify an arbitrary
number of agents. The relative location, i.e. the two-dimensional coordinates, of
the node on the left-hand side of the rule is matched with its appearance on the
right-hand side of the rule. If a node does not reappear on the right-hand side,
it implies that its corresponding agent has been removed. If a node appears at a
location that is unoccupied on the left-hand side, a new node is created. Figure
1 shows an example rule: It is applied with a probability of p = 0.3 at every
fourth time step (∆t = 4). One (arbitrarily chosen) node that fulfills predicateX
and predicateY is affected by actionJ and actionK. Also note that a new node is
created and is initialized in this rule for which no reference had existed before.
In case there are at least 6 nodes that fulfill predicateZ, they will all be removed.

3.2 Algorithm

A swarm graph grammar SGG = (I, Ξ,Gpredicate,Gaction, P ) is a quintuple,
where I describes a set of individuals relying on rules and properties as ex-
plained in the previous section. At the beginning of the simulation, a set Ξ of
axioms, in the form of initialization algorithms, is executed by (1) selecting and
expressing individuals from I, and (2) by assigning initial states to the newly
created individuals. For a homogeneous swarm of nest-constructing wasps3, for
instance, I only has to comprise a single agent description. Having created a
sufficient number of wasp agents, the axioms would assign contextual informa-
tion such as an initial location to the individuals. In the main loop of the swarm
3 See Section 4.2 for details.



6

graph grammar algorithm (Algorithm 1) two graphs Gpredicate ∈ Gpredicate and
Gaction ∈ Gaction are subsequently created that merge the triggered predicates
and corresponding actions of the individuals’ local rules. Gpredicate represents the
set of possible graphs of individuals interconnected through predicates. Gaction

hosts all possible action graphs. Chains of relations among sets of swarm in-
dividuals create semantic topologies for global graph structures that describe
the situational context or activity in the SGG system. Executing the actions of
Gaction yields the next simulation state after a policy P is applied to resolve pos-
sibly arising computational conflicts4. Thus, the alternating update of the graph
instances Gpredicate and Gaction based on the swarm individuals’ behaviours
drives the SGG simulation (Figure 2).

Algorithm 1 Swarm Graph Grammar: Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate

compute action graph Gaction based on Gpredicate

apply order policy P to Gaction

execute ordered actions of Gaction

until simulation is terminated

(a) (b)

(c)(d)

5

3 Swarm Graph Grammars

The swarm graph grammar formalism combines sets of agents with a graph-based repre-
sentation of their interactions. The agent formalism is so tightly interwoven with the graph
representation that it is hard to explain one part without the other one. Therefore, we will
outline the algorithmic framework first, and then explain the intricacies of the agents them-
selves.

A swarm graph grammar SGG = (Gen, Ξ,Gpred,Gperf , P ) is a quintuple, where Gen

contains a set of genotypes for generating new agents. Similar to the information stored
in natural DNA, the genotype encodes an agent’s phenotype. Hereby, the genotype covers
the details of the formal agent definition provided in Section ??. At the beginning of the
simulation, a set Ξ of axioms, in the form of initialization algorithms, is executed by first
selecting and expressing a number of genotypes from Gen, and secondly, by assigning initial
states to the newly created individuals. For a homogeneous boid flock, for instance, Gen

only has to comprise a single genotype. Having created a sufficient number of boids based
on this single genotype, the axioms would assign each boid contextual information such as
their initial location in the simulation space and their initial velocities.

After the initialization routine (Algorithm ??), the main loop of the swarm graph gram-
mar algorithm is entered (Algorithm ??). The SGG algorithm maintains two graphs, Gpred ∈
Gpred and Gperf ∈ Gperf , where the swarm individuals are represented as nodes, and where
edges denote their interrelationships. Gpred represents the set of possible graphs of agents
interconnected through unary and binary predicates. Gperf hosts all possible graphs that im-
pose performances onto swarm individuals. Predicates and performances take one or two
swarm individuals as parameters. The respective type of a relation is indicated by according
labels or edge colors, where the origin and the tip of a directed edge reference the associated
nodes. Chains of relations among sets of swarm agents create semantic topologies for global
graph structures that describe the situational context, or respectively, the activity in an SGG
system. In fact, the alternating update of the graph instances Gpred and Gperf based on the
individual swarm agents’ behaviors drives the SGG simulation.

Algorithm 1 Initialization Routine
Require: Gen, Ξ
Ensure: added nodes to Gpredicate

express a number of swarm individuals relying on Gen
initialize expressed individuals in the simulation context
add the initialized individuals as nodes to Gpredicate

start the Main Loop

Algorithm 2 Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate

compute performance graph Gaction based on Gpredicate

apply order policy P to Gaction

execute ordered performances of Gaction

until simulation is terminated

5

3 Swarm Graph Grammars

The swarm graph grammar formalism combines sets of agents with a graph-based repre-
sentation of their interactions. The agent formalism is so tightly interwoven with the graph
representation that it is hard to explain one part without the other one. Therefore, we will
outline the algorithmic framework first, and then explain the intricacies of the agents them-
selves.

A swarm graph grammar SGG = (Gen, Ξ,Gpred,Gperf , P ) is a quintuple, where Gen

contains a set of genotypes for generating new agents. Similar to the information stored
in natural DNA, the genotype encodes an agent’s phenotype. Hereby, the genotype covers
the details of the formal agent definition provided in Section ??. At the beginning of the
simulation, a set Ξ of axioms, in the form of initialization algorithms, is executed by first
selecting and expressing a number of genotypes from Gen, and secondly, by assigning initial
states to the newly created individuals. For a homogeneous boid flock, for instance, Gen

only has to comprise a single genotype. Having created a sufficient number of boids based
on this single genotype, the axioms would assign each boid contextual information such as
their initial location in the simulation space and their initial velocities.

After the initialization routine (Algorithm ??), the main loop of the swarm graph gram-
mar algorithm is entered (Algorithm ??). The SGG algorithm maintains two graphs, Gpred ∈
Gpred and Gperf ∈ Gperf , where the swarm individuals are represented as nodes, and where
edges denote their interrelationships. Gpred represents the set of possible graphs of agents
interconnected through unary and binary predicates. Gperf hosts all possible graphs that im-
pose performances onto swarm individuals. Predicates and performances take one or two
swarm individuals as parameters. The respective type of a relation is indicated by according
labels or edge colors, where the origin and the tip of a directed edge reference the associated
nodes. Chains of relations among sets of swarm agents create semantic topologies for global
graph structures that describe the situational context, or respectively, the activity in an SGG
system. In fact, the alternating update of the graph instances Gpred and Gperf based on the
individual swarm agents’ behaviors drives the SGG simulation.

Algorithm 1 Initialization Routine
Require: Gen, Ξ
Ensure: added nodes to Gpredicate

express a number of swarm individuals relying on Gen
initialize expressed individuals in the simulation context
add the initialized individuals as nodes to Gpredicate

start the Main Loop

Algorithm 2 Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate

compute performance graph Gaction based on Gpredicate

apply order policy P to Gaction

execute ordered performances of Gaction

until simulation is terminated

step
0
1
2
...

Fig. 2. Subsequent computation of (a) Gpredicate and (b) Gaction yield (c) the next
simulation state. The grey arrows from (a) to (c) relate nodes to their contextual
impact. (d) The simulation process is shown as a computation pipeline.

4 The implementation of an efficient conflict policy P is often difficult and its execution
can be computationally expensive.



7

4 Swarm Graph Grammars in Action

In this section we present three computational models realized with the SGG
framework. We retrace (1) a simple boids simulation [30], (2) the stigmergic
construction behaviour of the Chartergus wasp [35], and (3) cell proliferation
induced by a set of growth factors.

4.1 Boids

In order to specify a standard boid flocking simulation [30], we use a swarm
graph grammar SGGboid = (Iboid, Ξboid,Gboid

predicate,Gboid
action, Pboid). The sole in-

dividual iboid ∈ Iboid contains several weights for flocking urges, parameters to
determine a field of perception, as well as boundaries for the maximal flight ac-
celeration maxaccel and velocity maxvel. Ξboid generates a homogeneous set of
swarm individuals that are initialized with a random position −→p and velocity
−→v . As no interaction conflicts arise, the policy P is empty.

Boids rely on two behavioural rules shown in Figure 3. The movement rule
continuously updates a swarm individual’s position in accordance with its ve-
locity. The acceleration rule, substitutes the predicate sees(u, v) with the action
accelerate(u, v).

move

p = 1.0

Δt = 1

movement

acceleratesees p = 1.0

Δt = 1

(>0)

acceleration

Fig. 3. Two rules to de-
scribe a boid agent’s inter-
action behaviour.

The predicate considers the reference node’s loca-
tion, orientation and perceptional field to select a
set of interaction partners in accordance with their
respective locations. The action also considers the
difference between u’s and v’s states, including their
locations and velocities, and accelerates u accord-
ingly. For example, u accelerates towards v’s loca-
tion and it aligns its flight direction. In the example
displayed in Figure 4, the boid agents form a clus-
ter over time which is also reflected by increasingly
connected interaction graphs.

4.2 Stigmergic Construction

Theraulaz et al. have translated the nest construction processes of Chartergus
wasps into individual behavioural rules [35]. The rules in Figure 5 closely retrace
this behaviour5. The predicates around, below and occupied test the immediate
surroundings of the wasp to trigger comb construction in the remaining rules.
Hereby, previously deposited combs of two different types (Comb1, Comb2, or
Comb∗ for both) trigger the next placement actions. In addition, a movement
rule as seen in Figure 3 moves an individual unconditionally to a random location
in the simulation space. Figure 6 shows the development in agent space and cor-
relates the activating (red) and the constructed combs (green). The rule deploy-
ment is shown in a series of interaction graphs Ginteraction = Gpredicate∪Gaction.
5 The lattice-based matrix representation provided in [35] was translated into predi-

cates that test the corresponding spatial relationships.



8

t = 1933

t = 5676
Gpredicate Gaction Agent World

Fig. 4. Two sets of graphs Gpredicate, Gaction and a visualization of the agent space
show a clustering process in a SGG-driven boid simulation. The boid renderings—
triangles oriented towards their velocity with a conic field of perception—partially
overlap due to their strong alignment urge.

occupied
(=0)

Comb*

Comb2
around

p = 1.0

Δt = 1

Comb2

(>0) place
below

occupied
(=0)

Comb*

(=9)

Comb*

around

Comb2

p = 1.0

Δt = 1

(=0)
Comb1

place below

occupied
(=0)

Comb*

(=1)

Comb1

below

Comb*

p = 1.0

Δt = 1

(=1)
Comb2

place

(a) floor extension (c) floor template (d) floor initiation

Fig. 5. SGG rules that retrace the construction behaviour by the Chartergus wasp as
described in [35].

4.3 Swarm Development

Signalling factors determine the rate of cell proliferation which influence specific
morphological developments [26]. The rules in Figure 7 configure cells which
grow until they reach maturity (predicates not mature and mature). Mature
cells that are close to a Growth Factor increase their internal mitogen concen-
tration which in turn instigates proliferation (modelled as reset of the acting
cell and initialization of a second cell).

Figure 8 shows screenshots of the simulation. Tissue cells within the vicin-
ity of a signalling molecule start proliferating. Collision resolution through an
embedded physics engine allows the cells to assemble6. The emerging protuber-
ance is slanted to the right in accordance to the initial distribution of signalling
molecules. However, it is surprisingly symmetrical still, which could result from
a lack of simulated cell polarization.

6 In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org



9

366 968
1091

t = 366 t = 968 t = 1091

Fig. 6. Agent space and the corresponding interaction graphs of a wasp-inspired con-
struction process (grey dashed arrows indicate actions, orange ones predicates). At
t = 366 a floor template is constructed (rule (c) in Fig. 5). At t = 968 the construction
of a new floor is started (rule (d) in Fig. 5). At t = 1091 two floor extensions are
performed by different wasp agents triggered by the same subset of combs.

not mature

p = 1.0

Δt = 1 grow
Growth
Factor

close to p = 1.0

Δt = 1

(>0)

mature
produce
mitogen

initialize

mitogen

p = 1.0

Δt = 1 reset

grow mature proliferate

Fig. 7. Three rules to describe a simple developmental process model.

5 Summary and Future Work

Swarm graph grammars are a modelling and simulation framework that provides
a universal graph-based representation for swarm-based developmental systems.
Besides metabolic operations, i.e. the creation or removal of agents, the semantics
of agent relations are not part of the framework. The agents’ abilities have to
be implemented in the form of predicates and actions. The agents’ rule sets
(behaviours) drive the simulation processes and they are immediately reflected
in the interaction graph of a simulation. As examples, we used SGGs to simulate
boid flocking, stigmergic wasp nest construction, and growth and proliferation
in cellular morphological processes.

We are currently working on several aspects to improve and harness the uti-
lization of swarm graph grammars. The application of the framework has led
to many refinements in respect to the formalism and the algorithm. However,



10

t = 177 t = 385 t = 695

1
t = 1287 t = 1754 typical interaction graph

(here for t = 500)

Fig. 8. The proliferation of mature cells (blue: not mature; red: mature) is dependent
on the proximity to growth factors (green). At any time of the simulation, large numbers
of agents are informed by growth factors leading to typically dense but homogeneous
interaction graphs.

in order to render modelling with SGGs accessible, especially to non computer
scientists, we need to collect feedback from interdisciplinary modellers about the
shortcomings of the representation, e.g. regarding its visualization, terminology
and logic. In this paper, we have touched upon matching local agent rules with
a simulation’s emerging interaction graphs. We deem this a very promising ap-
proach to analyze emergent phenomena in simulations on the one hand, and to
create complex interaction processes with dynamic interaction topologies on the
other hand. Accordingly, systematic investigations have to be started. We are
also working on a slight modification of the SGG framework so that nodes can
encapsulate children and thereby computational or spatial hierarchies can be
built. This would allow for hierarchical modelling as in P systems [29].

Acknowledgements

Support for this research was provided by the Undergraduate Medical Eduction
program of the University of Calgary. We would like to thank Jörg Denzinger
for his invaluable advice on multi-agent systems and Heather Jamniczky for her
feedback on biological developmental systems.



11

References

1. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology.
Pearson Education, Upper Saddle River, NJ (2003)

2. de Boer, M.J.M., de Does, M.: The relationship between cell division pattern and
global shape of young fern gametophytes. i. a model study. Botanical Gazette
151(4), 423–434 (1990)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity, Oxford
University Press, New York (1999)

4. Burleigh, I., Suen, G., Jacob, C.: Dna in action! a 3d swarm-based model of a gene
regulatory system. In: ACAL 2003, First Australian Conference on Artificial Life.
Canberra, Australia (2003)

5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton Studies in Complexity,
Princeton University Press, Princeton (2003)

6. Culik, K., Lindenmayer, A.: Parallel graph generating and graph recurrence sys-
tems for multicellular development. International Journal of General Systems 3(1),
53–66 (1976)

7. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior
with situation-action-pairs. In: ICMAS. pp. 103–110. IEEE Computer Society
(2000)

8. Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative
character behavior. In: CIG. IEEE (2005)

9. Ehrig, H., Kreowski, H.J., Montanari, U., Rosenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Fraph Transformation, Concurrency, Parallelism,
and Distribution, vol. 3. World Scientific Publishing, Singapore (1999)

10. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Modelling and Simulation
of biological processes in the context of genomics, chap. Computational Models for
Integrative and Developmental Biology, pp. 12–17. Hermes (July 2002)

11. Giavitto, J.L., Michel, O.: Data structure as topological spaces. Unconventional
Models of Computation pp. 137–150 (2002)

12. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular pro-
cesses. Biosystems 70(2), 149–163 (2003)

13. Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose
operon. Natural Computing 3(4), 361–376 (December 2004)

14. Jacob, C., Hushlak, G., Boyd, J., Nuytten, P., Sayles, M., Pilat, M.: Swarmart:
Interactive art from swarm intelligence. Leonardo 40(3) (2007)

15. Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decen-
tralized defenses of immunity. In: Artificial Immune Systems, ICARIS 2006, 5th
International Conference. Springer, Oeiras, Portugal (September 2006)

16. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-
Organization and Complexity. Oxford University Press (1995)

17. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth
Grammars—A Parallel Graph Transformation Approach with Applications in Bi-
ology and Architecture. In: Applications of Graph Transformations with Industrial
Relevance. pp. 152–167. Springer-Verlag, Berlin, Heidelberg (2008)

18. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: Groimp as a platform for functional-
structural modelling of plants. In: Vos, J., Marcelis, L.F.M., deVisser, P.H.B.,
Struik, P.C., Evers, J.B. (eds.) Functional-Structural Plant Modelling in Crop Pro-
duction. pp. 43–52. Springer (March 2006)



12

19. Kniemeyer, O., Buck-Sorlin, G.H., Kurth, W.: A graph grammar approach to ar-
tificial life. Artificial Life 10(4), 413–431 (2004)

20. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Elsevier Academic
Press, London (2003)

21. Kurth, W., Buck-Sorlin, G., Kniemeyer, O.: Relationale wachstumsgrammatiken:
Ein formalismus zur spezifikation multiskalierter struktur-funktions-modelle von
pflanzen. In: Modellierung pflanzlicher Systeme aus historischer und aktueller
Sicht. Landwirtschaft, vol. 7, pp. 36–45. Landesamtes für Verbraucherschutz, Land-
wirtschaft und Flurneuordnung Brandenburg (2006)

22. Lindenmayer, A.: Developmental systems without cellular interactions, their lan-
guages and grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)

23. Lindenmayer, A.: An introduction to parallel map generating systems. Graph-
Grammars and Their Application to Computer Science pp. 27–40 (1987)

24. von Mammen, S., Jacob, C.: The evolution of swarm grammars: Growing trees,
crafting art and bottom-up design. IEEE Computational Intelligence Magazine
(August 2009)

25. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3d structures.
In: CEC 2005, IEEE Congress on Evolutionary Computation. pp. 1434–1441. IEEE
Press, Edinburgh, UK (2005)

26. Megason, S.G., McMahon, A.P.: A mitogen gradient of dorsal midline wnts orga-
nizes growth in the cns. Development 129, 2087–2098 (May 2002)

27. Nagl, M.: On the relation between graph grammars and graph l-systems. Funda-
mentals of Computation Theory pp. 142–151 (1977)

28. von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University
of Illinois Press, Urbana and London (1966)

29. Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer
Science 287(1), 73–100 (9 2002/9/25)

30. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4), 25–34 (1987)

31. Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Current
Topics in Developmental Biology 81, 342 (2008)

32. Sayama, H., Laramee, C.: Generative network automata: A generalized framework
for modeling adaptive network dynamics using graph rewritings. Adaptive Net-
works pp. 311–332 (2009)

33. Schlick, T.: Molecular Modeling and Simulation: an interdisciplinary guide, Inter-
disciplinary Applied Mathematics, vol. 21. Springer-Verlag, New York (2002)

34. Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification
and the simulation of discrete dynamical systems. Cellular Automata pp. 238–247
(2004)

35. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architec-
tures in social insects with lattice swarms. Journal of Theoretical Biology 177(4),
381–400 (1995)

36. Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural
extension of cellular automata. Adaptive Networks pp. 291–309 (2009)

37. Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-
out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (7
2009)

38. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign, Ilinois, US,
United States (2002)

39. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons,
Chichester, England (February 2002)


