
Self-Organized Middle-Out Abstraction

Sebastian von Mammen1, Jan-Philipp Steghöfer2, Jörg Denzinger1, and
Christian Jacob1,3

1 Department of Computer Science, University of Calgary, Canada
2 Institute of Software & Systems Engineering, Augsburg University, Germany

3 Department of Biochemistry and Molecular Biology, University of Calgary, Canada
s.vonmammen@ucalgary.ca, steghoefer@informatik.uni-augsburg.de,

denzinge@cpsc.ucalgary.ca, cjacob@ucalgary.ca

Abstract. In this position paper we present a concept to automatically
simplify computational processes in large-scale self-organizing multi-agent
simulations. The fundamental idea is that groups of agents that exhibit
predictable interaction patterns are temporarily subsumed by higher or-
der agents with behaviours of lower computational costs. In this manner,
hierarchies of meta-agents automatically abstract large-scale systems in-
volving agents with in-depth behavioural descriptions, rendering the pro-
cess of upfront simplification obsolete that is usually necessary in numer-
ical approaches. Abstraction hierarchies are broken down again as soon
as they become invalid, so that the loss of valuable process information
due to simplification is minimized. We describe the algorithm and the
representation, we argue for its general applicability and potential power
and we underline the challenges that will need to be overcome.

Keywords: Abstraction, multi-agent systems, middle-out modelling, sim-
ulation, motif detection, confidence estimation.

1 Introduction

Systems that comprise only few variables can exhibit complex behaviours [18]
and due to the multi-facetted interaction networks in natural systems [17] their
computation tends to be inefficient. Abstraction is the means to render compu-
tations feasible by capturing the essence of what is important on the one hand,
and by ignoring those aspects that are seemingly unrelated on the other hand.
Thus, the process of abstraction yields either generalized or specialized models
which results in either rather general or very specific results, respectively [9].

However, in models that try to capture the complexity and the nonlinearity
of natural systems seemingly unimportant variables can have a major impact
under certain circumstances [15]. Hence, contrary to the need for computational
efficiency, all available model data should be integrated into one simulation.
The solution to this dilemma is a method that automatically adjusts the de-
gree of abstraction of a computational model depending on its expected need
of comprehensive calculations. In this position paper, we present the concept
of a self-organizing middle-out (SOMO) abstraction system that realizes this



idea by means of agents that dynamically establish and break down hierarchical
relationships.

After a hint at the vast body of work of related ideas (Section 2), we describe
the representation and the algorithm that drive our concept (Section 3). In Sec-
tion 4, we outline the local agent behaviours for pattern-dependent construction
and destruction of hierarchies. We summarize our proposed approach and point
out open challenges that will need to be addressed in Section 5.

2 Related Work

At the heart of the presented work lies the idea of emergence, i.e. that a group
of interacting units, or agents, produces effects that cannot be inferred from the
properties and the behaviour of any of the individual agents itself [5]. There are
two ways to approach emergent phenomena: either the investigator starts with
a simple model of a system’s components and their interactions and he wonders
what global phenomena might emerge from them, or a global phenomenon has
been observed and now the underlying factors need to be unearthed (inverse
problem). These two cases are similar to bottom-up and top-down design pro-
cesses: In a bottom-up approach, basic building blocks are combined to result
in a higher order design complexity, whereas the top-down approach starts with
the desired product of great complexity and follows its stepwise reduction into
numerous parts of lesser complexity.

In the context of simulating a ’virtual heart’, Sydney Brenner coined the term
middle-out [10] as an approach for consistent computation of processes across
several levels of detail. So, a middle-out approach works both ways: Locally
interacting agents interact in accordance with a given model with the potential
to produce emergent phenomena (bottom-up), and the expected phenomena
determine the behaviours of the underlying units (top-down). Finding both these
approaches in one system, however, is rarely seen. Instead, the idea of building
structural and functional complexity from sets of interacting local agents has
been attracting some attention. Peter Schuster, for instance, argues that if some
agents’ interactions nurture themselves, like chemical reactions in hypercycles,
such mergers could drive the evolution of complexity [13]. Steen Rasmussen et al.
designed a computational model in which, based on interactions in an artificial
chemistry, structures form with an increase in structural complexity and with
different functionalities, from monomers to polymers to micelles [12]. Alan Dorin
and Jon McCormack argued, however, that such phenomena are not surprising
given the model’s simplicity. In fact, they argue that it takes considerably more
effort to determine the novelties brought about by a novel layer in a hierarchy
[2].

In general, synthesizing dynamical hierarchies at all scales is a difficult chal-
lenge, especially if real emergent, i.e. unforeseeable, features change the be-
haviours of higher order agents [7]. But even without considering the emergence
of global properties or behaviours, the idea of bottom-up learning can prove use-
ful. Abbas Shirazi et al., for instance, have shown that the effects of interacting



agent groups can be learned by means of artificial neural networks and subsumed
by according high-order agents to cut computational costs [14].

3 The SOMO Concept

We want to take Shirazi et al.’s approach several steps further. In particular, we
envision a multi-agent simulation in which self-organizing individuals form and
dissolve abstraction hierarchies (middle-out), incorporating and releasing other
agents, based on observed interaction patterns. In general, groups of agents are
subsumed by higher-order agents that emulate the groups’ interactions. This
computational simplification—not all possible interactions are computed—can
become invalid at some point in time, as the learned interaction pattern might
simply not apply any longer. In this case, the learned hierarchy has to be dis-
solved, i.e. the adopted agents are released again. Both adoption and release
of agents happen recursively, yielding ever-changing, potentially asymmetrical
hierarchical structures. Hence, the computational costs over the course of a sim-
ulation are only reduced, if the overhead of changing the hierarchy is less costly
than the costs for the pruned agent interactions. Therefore, a reduction of com-
putational costs can only be guaranteed, if the learned abstractions have a rea-
sonably long lifetime which is captured in a pattern’s confidence. Based on the
outlined ideas, we term this approach a self-organized middle-out abstraction
system, or simply SOMO learner.

3.1 Representation & Algorithm

We choose simple situation-action pairs for describing agent behaviours across
various levels of scale. Of particular interest in the context of SOMO are hi-
erarchical operators, i.e. predicates and actions for coping with hierarchical re-
lationships between agents. In order to establish a hierarchical relationship, an
agent might enter another agent. Alternatively, it might be adopted by another
agent. Both actions yield corresponding parent-child relationships between the
two agents. Such a parent-child relationship is reverted by raising a child in
the hierarchy.

We assume that primarily the agents that are root nodes in the hierarchy are
considered for execution. Children of a node are only recursively executed, if they
are flagged as active, which implies the existence of two actions activate and
deactivate to mark an agent accordingly. Deactivated child nodes make sense,
for instance, if their parent nodes subsume their behaviours but need to maintain
them for state updates and, potentially, their later release and re-activation.

A parent might cover its children, rendering them invisible to its environ-
ment, or expose them. In the latter case, the children are perceivable to other
agents at the hierarchical level of their parents and might trigger interactions.
The other way round, whenever an active child node is executed, its set of poten-
tial interaction partners is limited to its siblings and those agents it is exposed
to.



3.2 Interaction Patterns

SOMO agents log the behavioural rules that were activated over a certain pe-
riod of time in individual interaction histories. The entries of the sequential log
contain information about the facts that triggered the rule, its effects, and its
interaction partners. Similar to [11], we use the interaction histories as databases
for finding patterns in the agents’ interaction behaviours. Previously unknown
patterns, or motifs, can be identified in time series relying on various advanced
computing techniques such as learning partial periodic patterns [4], applying
efficient, heuristic search [1], online motif search [3], and even the identification
of patterns of multiple resolutions [16]. Motif detection is adapted to interaction
histories by assigning symbols, e.g. A or B, to specific log entries and finding
patterns in the resulting strings, e.g. BBABCCBBABDA. In the given example
BBAB is a motif candidate.

The cost of executing agent behaviours can be reduced according to the
amount of information provided by the motif. For instance, a motif which re-
lies on a subset of the agent’s rules would make it superfluous to consider the
remaining rules—the meta-agent would only consider the reduced rule set. Ide-
ally, a motif provides comprehensive information about the interaction partners
and the actual interactions, which allows to rewrite the agent rules as efficient
sequences of unconditional instructions, with source and target agents readily in
place.

SOMO agents can observe their own interaction history, as well as those
of others, for finding patterns as the basis for building abstraction hierarchies.
When observing a group of agents, motif detection is applied to their merged
interaction history.

4 SOMO Behaviour

By means of the presented representation, the recursive execution of agent hi-
erarchies, and the introduced hierarchical operators, the agents are capable of
building and dissolving hierarchies as part of their behaviours. When combined
with motif detection in interaction histories, behaviours can be designed to im-
plement the SOMO learner.

4.1 Changing the Hierarchy

In the simplest case, an agent observes its own interaction history, creates a
new agent, assigns its own abstracted behaviour, enters this new agent and
deactivates itself. The newly created higher order agent raises and activates

its children and removes itself from the simulation, as soon as its confidence has
dropped below a certain threshold (see Section 4.2).

More excitingly, as motivated in Section 2, an agent observes, adopts,
deactivates a whole group of other agents and assigns itself their simpli-
fied interaction behaviour. Repeated applications of these learning rules yield
continuously growing hierarchies with increasingly simplified behaviours. At the
same time, hierarchies are dissolved when no longer appropriate.



4.2 Confidence Estimation

When is it suitable for an observing agent to adopt another one to build up
hierarchies? When will a hierarchy have to be dissolved by raising one’s chil-
dren? The key to these questions is confidence estimation. There is a large body
of work around confidence in statistics [6] and its effective standardization for
use in the natural sciences is a vivid research area [8]. The general idea is to
estimate the probability that a pattern occurs based on its preceding frequency
over a given period of time.

In SOMO, a sufficiently great confidence value leads to abstraction. The con-
fidence value also determines the abstraction’s lifespan. Too generous confidence
metrics, i.e. too long abstraction lifespans, diminish the accuracy of a simulation.
An abstraction agent can be validated by comparing its behaviour to the effects
of its children’s interaction either at the end of its lifespan or based on heuristics
such as the degree of activity in its local environment. In case of miscalcula-
tions, the simulation could be reset to a previous simulation state, adjusted and
partially recomputed. This additional overhead might make it hard to reach a
gain in efficiency. On the other hand, if confidence is assigned too cautiously to
motifs, abstraction hierarchies do not get a chance to form in the first place.

5 Discussion and Challenges

We have proposed the algorithmic concept and representation for SOMO, a self-
organizing middle-out learner that automatically adjusts process abstractions
in multi-agent based simulations. It relies on hierarchical relationships among
agents and the fact that agents can change those relationships themselves. Hier-
archies of higher order agents are recursively built that subsume and simplify the
interaction processes of their children. The actual learning process is performed
by motif detection algorithms that work on the agents’ locally maintained inter-
action histories. Each motif is associated with a confidence value that determines
the lifespan of a higher level agent.

After the integration of the outlined modules, e.g. motif detection and hier-
archical operators, an extensive and systematic investigation into the impact of
various system parameters on the accuracy and the efficiency of scientific sim-
ulations needs to be started. Following the self-organization paradigm, we aim
at an adjustable agent behaviour for building and destroying hierarchies to op-
timally serve different simulation conditions. For instance, certain subspaces in
a simulation might be subjected to fundamental and fast changes, which would
result in a loss of efficiency due to the necessary hierarchy management. Other
subspaces, however, might be rarely affected by change and abstracting costly
agent dependencies could yield a significant gain in performance.

Another challenge is the application of locally learned patterns across the
whole simulation space. This could tremendously cut costs for repeatedly ob-
serving and learning similar processes. Of course, this idea also emphasizes the
more fundamental challenge of how general a motif should be interpreted. Again,
this might depend on the volatility of the simulation (sub-)space.



Once the first successful SOMO systems have been explored, it will be im-
portant to investigate correlations between the learned abstractions and features
and behaviours we find in higher order emergent phenomena. Whether there will
be striking similarity or whether these are two completely different aspects of
complex systems remains an exciting open question at this point in time.

References

1. Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discovery of time
series motifs. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 493–498. ACM, 2003.

2. Alan Dorin and Jon McCormack. Self-assembling dynamical hierarchies. Artificial
life eight, page 423, 2003.

3. Erich Fuchs, Thiemo Gruber, Jiri Nitschke, and Bernhard Sick. On-line motif
detection in time series with swiftmotif. Pattern Recognition, 42(11):3015 – 3031,
2009.

4. Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of partial periodic
patterns in time series database. In Proceedings of the International Conference
on Data Engineering, pages 106–115. Citeseer, 1999.

5. Steven Johnson. Emergence: The Connected Lives of Ants, Brains, Cities, and
Software. Scribner, New York, 2001.

6. Jack Kiefer. Conditional confidence statements and confidence estimators. Journal
of the American Statistical Association, 72(360):789–808, 1977.

7. Tom Lenaerts, Dominique Chu, and Richard Watson. Dynamical hierarchies. Ar-
tificial Life, 11(4):403–405, 2005.

8. Thomas A. Louis and Scott L. Zeger. Effective communication of standard errors
and confidence intervals. Biostatistics, 10(1):1, 2009.

9. Tom Mitchell. Introduction to Machine Learning. McGraw Hill, Boston, Mas-
sachusettes, 1997.

10. Denis Noble. The music of life. Oxford University Press Oxford, 2006.
11. S.D. Ramchurn, N.R. Jennings, C. Sierra, and L. Godo. Devising a trust model

for multi-agent interactions using confidence and reputation. Applied Artificial
Intelligence, 18(9):833–852, 2004.

12. Steen Rasmussen, Nils A. Baas, Bernd Mayer, Martin Nilsson, and Michael W.
Olesen. Ansatz for dynamical hierarchies. Artificial Life, 7(4):329–353, 2001.

13. Peter Schuster. How does complexity arise in evolution. Complex., 2(1):22–30,
1996.

14. Abbas S. Shirazi, Sebastian von Mammen, and Christian Jacob. Adaptive mod-
ularization of the mapk signaling pathway using the multiagent paradigm. In
Parallel Problem Solving in Nature (PPSN), Lecture Notes in Computer Science.
Springer, 2010.

15. Steven H. Strogatz. Nonlinear dynamics and chaos: With applications to physics,
biology, chemistry, and engineering. Westview Press, 2000.

16. Qiang Wang, Vasileios Megalooikonomou, and Christos Faloutsos. Time series
analysis with multiple resolutions. Information Systems, 35(1):56 – 74, 2010.

17. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393(6684):440–442, June 1998.

18. Steven Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois,
US, United States, 2002.


