
SwarmScript 3.0

Algorithmic Specification

Revision, January 2, 2011

Sebastian von Mammen, Scott Steil, and Christian Jacob

University of Calgary, Canada

1 SwarmScript—A High-level Description

SwarmScript provides a powerful programming approach based on situation-
action pairs which allow the modeller to express agent behaviours and which
equally well translate into computational processes. It merges a standardized
representation for modelling agent behaviours with an algorithmic interpretation
for simulating the resulting interactions.

In SwarmScript, situation-action pairs are built bottom-up from selection
and action operators. The basic idea is that selection operators pass situational
information to actions which change the simulation state. The information flow
is determined through connections that are hooked up to plugs exposed by the
operators. Information about the simulation state flows through chains of selec-
tion operators that feed into action operators.

On the one hand, chains of selection operators serve as sources of informa-
tion for an action, e.g. they trigger whether or not an action should be executed
and provide it with various parameters. These selection operators are classified
as source selections. On the other hand, chains of selection operators direct an
action toward specific targets. These selection operators are classified as target
selections. Given that sources and targets are clearly separated, sources encom-
pass all the information that motivates and informs an action, whereas targets
clearly denote those programmatic objects that are changed based on the exe-
cution of an action. This distinction highlights the relationship between cause
and effect, the two fundamental, interwoven constituents of an interaction.

The next section will introduce the data model of SwarmScript v3.0, whereas
Sections 3 to 5 present pseudo code for creating, modifying and running Swarm-
Script simulations. Section 3 introduces some technical methods for setting, up-
dating, and querying the connectivity of SwarmScript operators. Section 4 sheds
light on routines necessary for creating and editing SwarmScript behaviours, in-
cluding the creation of high-level operators. Finally, the pseudo code in Section
5 shows how SwarmScript behaviours can be simulated.

Some methods and functions that occur in the presented pseudo code are
typically provided by high-level programming libraries and either access the
properties of abstract data structures (getters/setters and type checking), create
or delete instances (constructors receive their properties as parameters in the

2

order shown in Figure 1), or they are generic operators that work on collections.
In particular, the following list-related routines are assumed to be commonly
understood and available without further explanations:

– list.append(element), list.append(list),
– list.remove(element),
– list.hasNext() and list.next(),
– list.hasElement(element), list.hasElements(list),
– list.first(), list.last(), list.get(index),
– list.size(),
– list.copy(), and
– list.sort().

Regarding the usage of basic control flow routines, for and while loops are
used whenever the iteration order is important. Otherwise, for each statements
are deployed. For all is only used once, in a case in which the most efficient way
to iterate to a set of elements depends on the implementation framework.

2 Language Elements

In this section, the role of the various elements of the SwarmScript language is
presented in detail and an according data model is introduced. Figure 1 shows
a schematic diagram of the involved object classes and their dependencies in
UML/Martin notation (Unified Modelling Language). Different Operator sub-
classes, i.e. Selections, Actions, and BehaviourFrames, have Plugs that are in-
terconnected by means of Connection instances.

Figure 2 depicts a schematic visualization of a potential agent behaviour
expressed by intertwined SwarmScript language elements. Connections are rep-
resented as thin black lines, small circles denote plugs, the wrapping boxes are
operators, small numbers in the upper right corner of an operator indicate its
hierarchical level, the ptrigger plug of a behaviour frame is depicted as an on/off
switch in the upper left corner of a behaviour frame. A hierarchical operator
can be expanded to reveal its underlying operators. In such an open state, the
higher-level operator is reduced to a framing rectangle enclosing its underlying
operators with a button in the upper right corner. This button indicates that it
can be wrapped, reduced to its compact representation at any point in time.

Actions and behaviour frames are placed on the grey strip, whereas source
selections are arranged on the left-hand side and target selections on the right-
hand side of the strip. Information flows through chains of selection operators
from their output plugs to the connected input plugs.

Actions and behaviour frames only have input plugs. They receive informa-
tion from source selections from the left and from target selections from the
right. The spatial separation of selections in in accordance with their seman-
tics is also reflected in the arrangement of input plugs of actions and behaviour
frames—source input comes in from the left, target input from the right.

The following paragraphs detail the concepts underlying the individual lan-
guage elements and how they work together.

3

getSourcePlugs()
getTargetPlugs()
isZeroLevel()
depth()
above()
below()
containsOperator()
containsOperators()
canHost()
addTo()
disconnect()
delete()
update()
compute()

owner : Operator
level : int
inputPlugs : list<InputPlug>
internalSelections : list<Selection>

Operator
owner

getTriggeredActions()
updateEvaluableOperators()

p_trigger : InputPlug
internalBehaviourFrames : list<BehaviourFrame>
evaluableActions : list<Action>
evaluableBehaviourFrames : <BehaviourFrames>

BehaviourFrame

internalBehaviourFrames,
evaluableBehaviourFrames

type : source/target
outputPlugs : list<OutputPlug>
computed : boolean
index : int

Selection

isEvaluable()
isTriggered()
actualize()

internalActions : list<Action>
Action

internalActions

evaluableActions

upstreamSelections

getConnectedInputPlugs()
getConnectedOperators()

connections : list<Connection>
OutputPlug

owner, zeroLevelOwner

p_trigger

outputPlug : OutputPlug
inputPlug : InputPlug

Connection

getConnectedOutputPlug()
getConnectedSelection()
isConstant()
isEvaluable()
isTriggered()
orderUpstreamSelections()
computeUpstreamSelections()

type : source/target
connection : Connection
upstreamSelections : list<Selection>
upstreamUnconnectedPlugs : list<InputPlug>

InputPlug

upstreamUnconnectedPlugs

outputPlug

connections

inputPlug

outputPlugs

inputPlugs

internalSelections

isConnected()
isInternallyConnected()
connectTo()
disconnect()
cleanDisconnect()

owner : Operator
zeroLevelOwner : Operator
value : arbitrary data type

Plug

connection

Fig. 1. The classes of the SwarmScript language elements in UML/Martin notation.

2.1 Connection

Connection instances link two operators by referencing one input and one out-
put plug, respectively.

4

Fig. 2. A schematic visualization of SwarmScript language elements as they might be
intertwined to express agent behaviour. The red arrows and labels denote the transla-
tion of the visuals into SwarmScript elements.

2.2 Plug

A Plug instance belongs to an operator, its owner. Additionally, it has a value
assigned—by default it is nil.

2.3 OutputPlug

Output plugs can share any number of connections to input plugs.

2.4 InputPlug

Based on the intended use of the information received from the selection opera-
tors, input plugs are considered either of type source or target. An input plug
may have one connection to an output plug. The sequence of selections that
feeds into an input plug is stored in upstreamSelections, unconnected input
plugs that occur in this sequence are stored in upstreamUnconnectedPlugs.

5

2.5 Operator

Selection, Action, and BehaviourFrame are directly or indirectly derived from
the Operator class. An operator may be owned by another operator, its owner.
The level of recursion of an operator is reflected by its level property. It is de-
termined by the maximal recursion level of its underlying operators plus one.
Any operator has a (possibly empty) list of input plugs (inputPlugs) which
provide information to the operator, and a list of Selection instances which pro-
vide or refine the incoming information. An operator can be built hierarchically
and host multiple underlying selection operators. As there might be dependen-
cies regarding the execution order, these selections are stored in the ordered
list of internalSelections. Unconnected input and output plugs of the internal
operators become the input and output plugs of the higher level operator.

2.6 Selection

Selection operators provide situational information that informs or triggers, i.e.
instigates, an agent’s interactions. Selection operators can be joined into chains
by connecting their output plugs to other operators’ input plugs. Although the
propagation of information across chains of selection operators can result in
complex computations, selections do not change the simulation. Selections only
pass information to actions which in turn change the simulation state based on
the provided information.

A selection operator stores values in its output plugs based on information
received from its input. It can, for example, filter a list of agents by their name
(one input and one output plug) or merge two lists of agents and pass it on (two
input plugs, one output plug). Selection operators without inputs can output
information that is independent of preceding selection operators. Such terminal
selection operators could, for instance, provide a constant number, the outcome
of a random experiment, or forward information retrieved from external compu-
tational engines, e.g. objects that have collided with a given agent determined
by a physics engine.

If a selection operator fails to compute, for instance because it is lacking
important information, it might store a nil value in its output plug(s). An
action operator that receives one or more nil values, will not be executed.

There are two types of selections. Source selections provide information to
trigger and/or configure an action, whereas target selections identify those pro-
grammatic objects that will be changed when the action is executed. This dis-
tinction is mainly semantic at the model level but might be reflected at the
user-interface level as shown in Figure 2.

Individual selection operators might feed their information into multiple ac-
tion operators—either because the actions target the same programmatic objects
or because they retrieve information from the same sources. Instead of evaluat-
ing shared selection operators multiple times, they are computed only once per
iteration and their computed properties are set to true.

A selection’s index property is utilized when it is sorted to resolve the exe-
cution interdependencies among operators.

6

2.7 Action

An action operator only has input plugs. These input plugs are classified as
source and target plugs in accordance with their intended usage. An action
retrieves information from its source plugs and applies changes to selections
connected to its target plugs.

If one or more input plugs of a connected selection chain are unconnected or
set to nil, an action is not evaluable, and thus, not considered for execution. All
evaluable actions, however, are considered for execution at each simulation step.
If their associated selection operators provide valid return values (non-nil), the
actions get actualized.

An action can be comprised of a sequence of several underlying actions.
Naturally, the whole sequence is only executed, if (1) all of the underlying actions
are evaluable, and (2) all of the associated selections provide valid return values.

An action or an action sequence can be wrapped into high-level actions to-
gether with (parts of) the connected selection chains. Unconnected source or
target plugs of the wrapped internalActions are adopted by the new operator
as such, whereas unconnected input plugs of the associated selections are added
to its source or target plugs depending on their types.

2.8 BehaviourFrame

Behaviour frames can wrap sets1 of internal selections, actions, and behaviour
frames. Similar to actions, behaviour frames only expose input plugs of types
source and target. However, different from actions, the exposed plugs of a be-
haviour frame do not need to be connected in order to consider the encapsulated
actions for execution. Any evaluable, encapsulated actions are still considered
for execution.

However, the execution of a behaviour frame may be skipped altogether, in
case its activation plug ptrigger is not evaluable 2. Therefore, as a first optimiza-
tion step, evaluable actions and lower-level behaviour frames whose ptrigger plugs
are evaluable are stored in a behaviour frame’s evaluableActions and evalu-
ableBehaviourFrames lists. In a second step, only these evaluable behaviour
frames and actions will be considered for execution.

2.9 Schematic Instance Representation

The series of Figures 3 to 7 depicts the hierarchical design of a possible Swarm-
Script behaviour. In Figure 3, a sequence of two action operators is shown at

1 In numerous cases, sets would be mathematically more adequate as containers for
SwarmScript elements than lists. However, due to their topological relationships, it is
important to store most SwarmScript operators in ordered lists. Using lists facilitates
the maintenance of an expedient, consistent relationship between the syntactical
arrangement and the semantical interpretation of their symbolical representation.

2 Due to the design of SwarmScript, especially because actions only execute, if their
input plugs have or receive valid information, the return value nil generally implies
no execution.

7

the top of the grey strip, followed by another single action in the centre, and a
behaviour frame at the bottom.

The sequence of two action operators at the top will execute in top-down
order, only if (a) both operators are fully connected and (b) all their plugs
receive non-nil values. Due to their interdependency, sequences of actions can
be wrapped into a higher order action operator. As one can see, the given action
sequence will not be considered for execution, since its second plug on the left-
hand side is not set.

The action operator in the centre of the grey strip, it seems, is fully connected.
However, upon closer inspection, one will find that the left-most selection opera-
tor, which this action operator also depends on, is not fully connected. Therefore,
this action operator, too, will not be considered for execution in the given con-
figuration. The same is true for behaviour frame operator at the bottom of the
grey strip3.

In Figure 4, the level-2 selection operator to the left is opened up for inspec-
tion and modification. It shows that its output is generated by passing infor-
mation through four internal selection operators, one of which is hierarchically
designed as well (level-1). The second action of the action sequence at the top
of the grey strip is opened up in Figure 5, revealing that it consists of another
sequence of two action operators. In Figure 6, the behaviour frame at the bottom
of the grey strip is opened. It consists of two behaviour frames itself and four
associated selection operators. Diving into the bottom-most behaviour frame
one more time in Figure 7 reveals the combination of one action sequence and
one further, independent action, depending on another nine internal selection
operators.

3 Basic Routines

This section introduces routines that revolve around the connectivity, i.e. re-
trieving, setting, and changing the state of connectivity of SwarmScript opera-
tors. These rather technical routines are fundamental for creating and editing a
SwarmScript behaviour (Section 4) and for processing it as part of a simulation
(Section 5).

3.1 Additional Getter Methods

By means of their respective connections, plugs can be queried for their linked
plugs or linked operators. In particular, an OutputPlug instance can be queried

3 The behaviour frame is visualized with a black bar at its centre, which not only
resembles the grey strip of the behaviour frame that hosts the complete behaviour
of an agent. But it also indicates that the source information on the left-hand side of
the operator might not be related to the changes induced to the targets connected on
the right-hand side. In actions, on the other hand, the internal logic between sources
and targets is intertwined to such a degree that they can be considered completely
dependent. Therefore, actions are not shown with a bar between the two kinds of
input plugs.

8

0

1

0

0
1

20

2

0

self

2

1

self

4

true

Fig. 3. A possible SwarmScript behaviour in the works—all actions and the depicted
behaviour frame are not fully connected, yet.

0

1

0

0
1

20
0

self

2

1

1

0
0

0

self

4

true

Fig. 4. The selection operator at the left centre has been opened up for inspec-
tion/modification.

9

0

0

0
1

20
0

self

1

1

0
0

0

self

4

0

0

2 self

true

Fig. 5. The second action operator of the action sequence on the grey strip is itself
composed of a sequence of two action operators.

0

0

0
1

20
0

self

1

1

0
0

0

1

0

2

3
2

0

self

true

true

0

0

2 self

true

Fig. 6. The behaviour frame at the bottom consists of two lower-level behaviour frames
and four selection operators.

10

0

0

01

20
0

self

1

1

0
0

0

1

0

3

2

0
true

10

1

self
0

0

1 0

0

0

0

true
1

0

0

true

0

0

2 self

Fig. 7. Nine more selection operators, an action sequence and another independent
action were hidden in the bottom-most behaviour frame.

11

for its linked input plugs (getConnectedInputPlugs(), Alg. 1) or linked op-
erators (getConnectedOperators(), Alg. 2). An InputPlug instance can be
queried for its associated output plug (getConnectedOutputPlug(), Alg. 3)
or selection operator (getConnectedSelection(), Alg. 4).

Output: list〈InputP lug〉
plugsconnected := {};
for i := 0, i < self.connections.size(), i + + do
plugsconnected.append(self.connections.get(i).inputP lug);
return plugsconnected;

Algorithm 1: OutputP lug.getConnectedInputP lugs()

Output: list〈Operator〉
operatorsconnected := {};
plugsconnected := self.getConnectedInputP lugs();
for i := 0, i < plugsconnected.size(), i + + do
operatorsconnected.append(plugsconnected.get(i).owner);
return operatorsconnected;

Algorithm 2: OutputP lug.getConnectedOperators()

Output: OutputPlug
return self.connection.outputPlug;

Algorithm 3: InputP lug.getConnectedOutputP lug()

Output: Selection
connectedOutputPlug := self.getConnectedOutputP lug();
if connectedOutputPlug == nil then

return nil
end
else

return connectedOutputPlug.owner;
end

Algorithm 4: InputP lug.getConnectedSelection()

It is important to know which action plugs and ptrigger plugs a specific input
plug affects based on the given connection topology. Any topological changes

12

require these plugs to update their dependencies. getAffectedInputPlugs()
(Alg. 5) finds an according list of affected, non-Selection plugs. The function
tests whether the given input plug belongs to a non-Selection operator, other-
wise it recursively steps through all the output plugs of its owner and recursively
considers their linked input plugs. Figure 8 depicts the algorithmic process ef-
fected by the getAffectedInputP lugs() routine. Starting with the input plug
of the left-most selection operator, it forward traverses all linked selection op-
erators until it connects to some of the action operators located on the grey
strip, to the ptrigger plug of the outer, opened behaviour frame, and to one of its
selection’s input plugs, which is exposed as one of the behaviour frame’s exposed
input plugs.

The latter case deserves some attention: When building the hierarchical be-
haviour frame operators, the Selection instance’s input plug became a source
plug of the inner behaviour frame first, and of outer behaviour frame afterward.
Therefore, it is not considered a plug of a Selection instance any longer. As
high-level operators become the owners of their exposed plugs (implemented by
the updating routines, Algs. 40 and 41), the internal selection operators of the
opened selection operator are not traversed.

Output: list〈InputP lug〉
if class of self.owner is not Selection then return {self};
downstreamAffectedInputPlugs := {};
foreach pout ∈ self.owner.outputP lugs do

foreach pin ∈ pout.getConnectedInputP lugs() do
downstreamAffectedInputPlugs.append(pin.getAffectedInputP lugs());

end

end
return downstreamAffectedInputPlugs;

Algorithm 5: InputP lug.getAffectedInputP lugs()

The Operator base class provides input and output plugs and according,
inferable setter and getter methods. The input plugs of action operators and
behaviour frames are divided into source and target plugs. The Operator meth-
ods getSourcePlugs() (Alg. 6) and getTargetPlugs() (Alg. 7) provide easy
access to these two distinct types of input plugs.

3.2 State Querying Routines

As shown in Figure 9, a behaviour frame Broot hosts a set of operators that may
in turn be composed of lower-level operators. The leaves of the operator tree are
referred to as 0− level operators; this state is determined by checking whether
an operator has any internal operators (Alg. 8). There are several methods that
provide information about an operator’s state in the hierarchy. depth() yields the
distance of an operator to the root (Alg. 9). Two operators may lie on the same

13

0

0

01

20
0

self

1

1

0
0

0

1

0

3

2

0
true

10

1

self0

0

1 0

0

0

0

true
1

0

0

true

0

0

2 self

Fig. 8. Starting from the left-most selection operator, all affected non-Selection input
plugs are discovered by the function getAffectedInputP lugs(). The result are the red
coloured plugs of operators on the grey strip as well as the single source and the ptrigger
plug of the opened, outer behaviour frame.

Output: list〈InputP lug〉
plugs := {};
for i := 0, i < self.inputP lugs.size(), i + + do

if self.inputPlugs.get(i).type == source then
plugs.append(self.inputP lugs.get(i));

end
return plugs;

Algorithm 6: Operator.getSourceP lugs()

Output: list〈Plug〉
plugs := {};
for i := 0, i < self.inputP lugs.size(), i + + do

if self.inputPlugs.get(i).type == target then
plugs.append(self.inputP lugs.get(i));

end
return plugs;

Algorithm 7: Operator.getTargetP lugs()

14

path of the tree, one being above the other one being below (Algs. 10 and 11).
Whether an operator contains other operators as (direct) children is revealed by
the containsOperator() and containsOperators() methods (Algs. 12 to 15).

de
pt

h

Broot

B1A5A1S1 S4 S10... ...

S4 S2S4 S1 S4 S3 A1 S1A1 A1 B1 B1B1 A1

S4 S2S1 A1A1A2A1A1A1
......

...

...

0

1

2

3

level 0 level 0 level 0

level 0

level 0

level 0

......

level 0

Fig. 9. The operator hierarchy; High-level operators are built bottom-up from zero-
level operators. The steps needed to get to the tree’s root Broot denotes an operator’s
depth in the hierarchy.

A plug can either be connected or not. The according state querying func-
tion isConnected() tests whether the list of connections of an output plug is
initialized and not empty (Alg. 16), its implementation for an input plug simply
tests whether or not its connection reference is initialized at all (Alg. 17).

The internal operators of a high-level wrapper may be connected with one
another, as for example in the expanded selection wrapper in Figure 4. Here, four
internal selection operators are interconnected. Some of them are also connected
to the outside of the wrapper. The methodisInternallyConnected(), Algs. 18
and 19, checks whether a plug is only connected within a given wrapper (true), or
whether it is connected beyond its boundaries (false). It first queries whether a
plug is connected at all, and second whether its connected operators are children
of the given operator.

While the value of an output plug is updated as part of the execution of the
internal logic of the respective operator, input plugs pull in information, allowing
for its propagation across chained operators. It is important to know whether

15

Output: boolean
if self.internalSelections.size() > 0 then return false;
if class of self is Selection then return true;
if self.internalActions.size() > 0 then return false;
if class of self is Action then return true;
if self.internalBehaviourFrames.size() > 0 then return false;
return true;

Algorithm 8: Operator.isZeroLevel()

Output: int
depth := 0;
ancestor := self.owner;
while ancestor != nil do

ancestor := ancestor.owner;
depth += 1;

end
return depth;

Algorithm 9: Operator.depth()

Input: o: Operator
Output: Boolean
return o.below(self);

Algorithm 10: Operator.above()

Input: o: Operator
Output: Boolean
if self.depth() <= o.depth() then return false;
ancestor := self.owner;
while ancestor != o AND ancestor.owner != nil do

ancestor := ancestor.owner;
end
return ancestor == o;

Algorithm 11: Operator.below()

Input: o : Operator
if class of o is not Selection then

return false;
else

return self.internalSelections.hasElement(o);
end

Algorithm 12: Selection.containsOperator()

16

Input: o : Operator
if class of o is Selection then

return self.internalSelections.hasElement(o);
else if class of o is Action then

return self.internalActions.hasElement(o);
else

return false;
end

Algorithm 13: Action.containsOperator()

Input: o : Operator
if class of o is Selection then

return self.internalSelections.hasElement(o);
else if class of o is Action then

return self.internalActions.hasElement(o);
else

return self.internalBehaviourFrames.hasElement(o);
end

Algorithm 14: BehaviourFrame.containsOperator()

Input: ops : 〈Operator〉
foreach Operator o ∈ ops do

if self.containsOperator(o) == false then return false;
end
return true;

Algorithm 15: Operator.containsOperators()

17

Output: boolean
return self.connections ! = nil AND self.connections.size() > 0;

Algorithm 16: OutputP lug.isConnected()

Output: boolean
return self.connection ! = nil;

Algorithm 17: InputP lug.isConnected()

it is possible for an input plug to receive a valid value or not—an invalid value
(nil) at a non-selection input plug prevents its operator from execution. We say
an input plug is evaluable (InputPlut.isEvaluable(), Alg. 21), if it is set to a
constant value (isConstant(), Alg. 20), or it is connected and it does not de-
pend on any unconnected (or not constant) input plugs (which are accordingly
titled upstream unconnected plugs). If all the input plugs of an action operator
are evaluable, the operator itself is also evaluable (Action.isEvaluable(), Alg.
22). A behaviour frame is considered evaluable, if its activation plug, ptrigger,
is evaluable (BehaviourFrame. isEvaluable(), Alg. 23). The isEvaluable()-
functions ensure that the respective plugs and operators have the potential to
receive non-nil values, either because they are fully upstream connected or be-
cause they provide constant, non-nil values.

Remark: Operators at the top-most level that are not evaluable are not con-
sidered for execution since they are lacking some information. However, lower-
level operators that are not evaluable are considered for execution regardless
since they might be properly connected at higher levels.

A positive return value of isEvaluable() does not rule out the possibility
than the operator may receive an invalid nil value during the actual evalua-
tion process. Only if it receives non-nil information, we say the plug or the
operator is triggered (Plug.isTriggered(), Action.isTriggered(), and Be-
haviourFrame. isTriggered(), Algs. 24 to 26).

An evaluable input plug is triggered, if it returns a constant value or if
it retrieves a non-nil value from its connected output plug. In order to test
whether a valid value is retrieved from a connected output plug, the method In-
putPlug.computeUpstreamSelections() (Alg. 45) needs to be called, which
computes the list of upstream connected selections in the given order and up-
dates the value of the connected output plug. This method is presented as part
of the simulation routines of Section 5. Afterward, the input plug retrieves the
updated value from the output plug. If it is non-nil, the input plug is considered

Input: op: Operator
Output: boolean
return self.isConnected() AND
op.containsOperators(p.getConnectedOperators());

Algorithm 18: OutputP lug.isInternallyConnected()

18

Input: op: Operator
Output: boolean
return self.isConnected() AND
op.containsOperator(p.getConnectedSelection());

Algorithm 19: InputP lug.isInternallyConnected()

Output: boolean
return self.isConnected() == false AND self.value ! = nil;

Algorithm 20: InputP lug.isConstant()

Output: boolean
return self.isConstant() OR (self.isConnected() AND
self.upstreamUnconnectedPlugs.size() == 0);

Algorithm 21: InputP lug.isEvaluable()

Output: boolean
for i := 0, i < self.inputP lugs.size(), i + + do

p := self.inputPlugs.get(i);
if p.isEvaluable() == false then return false;

end
return true;

Algorithm 22: Action.isEvaluable()

Output: boolean
return self.ptrigger.isEvaluable();

Algorithm 23: BehaviourFrame.isEvaluable()

19

“triggered”. The method InputPlug.orderUpstream Selections() (Alg. 27)
prepares an input plug’s upstreamSelections list for computation. It is detailed
in the following paragraphs on state updating routines.

Action.isTriggered() first tests whether all the input plugs of an action
yield non-nil values. If it is a level-0 action, i.e. if it does not contain further
internal actions, it is indeed triggered. If, however, it contains further internal ac-
tions and possibly internal selection operators, the higher-level action as a whole
gets triggered only if all its internally wrapped actions are triggered. Hence, if
only one contained internal action is not triggered, the high-level operator is not
triggered either. The method recursively works through the action hierarchy.

Output: boolean
if self.isConstant() then return true;
self.computeUpstreamSelections();
self.value := self.connection.outputPlug.value;
return self.value != nil;

Algorithm 24: InputP lug.isTriggered()

Output: boolean
for i := 0, i < self.inputP lugs.size(), i + + do

p := self.inputPlugs.get(i);
if p.isTriggered() == false then return false;

end
if self.level > 0 then

for i := 0, i < self.internalActions.size(), i + + do
a := self.internalActions.get(i);
if a.isTriggered() == false then return false;

end

end
return true;

Algorithm 25: Action.isTriggered()

Output: boolean
return self.ptrigger.isTriggered();

Algorithm 26: BehaviourFrame.isTriggered()

20

3.3 State Updating Routines

The method InputP lug.orderUpstreamSelections() (Alg. 27) retrieves and or-
ders the internal selection operators that are connected to an input plug. It also
aggregates upstream plugs that are neither constant nor connected. Each inter-
nally upstream-connected Selection instance is added to the list of upstreamSe-
lections and is marked with a step-wise increased index value, starting from 0.
Its input plugs are added to the list of plugs to follow up on. During the up-
stream traversal of connected selections, the selections are assigned index values
that inversely reflect their order of access—selections with high indices need to
be computed before those with lower indices. The list of upstream selections is
sorted accordingly. Input plugs that are neither connected nor constant represent
dependencies that cannot be internally resolved—these are added to the list of
upstreamUnconnectedP lugs4.

self.upstreamUnconnectedPlugs := {};
self.upstreamSelections := {};
index := 0;
inputPlugs := {self};
for i := 0, i < inputP lugs.size(), i + + do

pin := inputPlugs.get(i);
if pin.isInternallyConnected(self.owner.owner) then

connectedSelection := pin.getConnectedSelection();
connectedSelection.index := index + +;
inputPlugs.append(connectedSelection.inputP lugs);
self.upstreamSelections.append(connectedSelection);

else if pin.isConnected() == false AND pin.isConstant() == false then
self.upstreamUnconnectedPlugs.append(pin);

end

end
self.upstreamSelections.sort() with descending index;

Algorithm 27: InputP lug.orderUpstreamSelections()

Figure 10 depicts the process effected by InputP lug.orderUpstreamSelec-
tions() working on B’s upper input plug (double-lined, red circle). Afterward, its
associated list upstreamUnconnectedP lugs will contain A’s upper input plug.
The list upstreamSelections will contain C and A, and in this order, since
C needs to compute first. In Figure 11 the upstream selections of the second
input plug (marked with a double red line) of an action operator are computed.
Its list upstreamConnectedP lugs will contain the blue coloured input plugs of
operators A′ and D, its upstreamSelections list will be {D,G,A′, F}. During

4 External connections, i.e. those that connect to non-internal operators, need not be
considered in the orderUpstreamSelections() method since (1) external operators
will be executed at a higher algorithmic level and (2) any upstream unconnected
plugs are connected through exposed plugs of the high-level operator anyways.

21

the computation of the upstream selections, the index value of D was set to 3
first, then overwritten by the value 4 since two independent downstream selection
operators accessed it. Overwriting indices ensures that an operator is computed
as soon as necessary.

0

1

G 0

0
D 1

20
0

self

2

F 1

index = 0

A 0

index = 1

C 0
E 1

B 0

self

4

true

Fig. 10. Starting from the upper one of B’s input plugs (the double-lined red circle),
the upstream selection operators A and C are determined and ordered for execution.

4 Routines of the Modelling Phase

The routines of the modelling phase can be roughly divided into three categories:
Adding and removing operators, adding and removing connections, and creating
high-level operators.

4.1 Adding/Removing Operators

During the modelling phase, selections, actions and behaviour frames are com-
bined to shape the behaviour of an agent. A single behaviour frame, also referred
to as the “root” behaviour frame, serves as a workspace to host and configure
SwarmScript operators. Predefined, configurable SwarmScript operators may be
provided by an operator library and be added to the behaviour frame or to its
lower-level operators.

Operator.canHost() (Alg. 28) tests whether an operator can wrap a given
list of operators. Behaviour frames can host any kind of operators, but they
cannot be added to actions, and neither actions nor behaviour frames can be
added to selections.

22

0

1

index = 2

G 0

0

index = 3/4

D 1

20

index = 1

A' 2

0

self

2

index = 0

F 1

self

4

true

Fig. 11. Starting from an action operator’s input plug (the double-lined red circle),
the upstream selection operators F , A′, G and D are determined and stored as the
ordered list {D,G,A′, F}.

If possible, Operator.addTo() (Alg. 29) adds an operator, which has not
previously existed in the model context, to another one. Once a new operator
has been introduced, its owner is updated in order to ensure that it exposes
the proper plugs. The implementations of the Operator.update() method are
presented in the paragraphs about creating high-level operators, starting with
Section 4.3.

The transfer of a list of already existing operators into an enclosing operator
is realized by the transfer procedure (Alg. 30); The operation is cancelled, if
the selected operators cannot be introduced into the target operator. In case
the target operator is lower in the hierarchy, all the connections of the trans-
ferred operators can be maintained. Otherwise, all those plugs of the transferred
operators need to be disconnected that were internally connected to operators
that are not being transferred as well. Otherwise, we could not ensure that a
consistent state is achieved, without illegal connections (for instance from on ac-
tion to another one). Next, the transfer procedure detaches the operators from
their previous owners, appends them to the respective lists of their new owner,
and adjusts the ownership reference. After all the operators have been trans-
ferred, the previous owners as well as the target that received the operators are
updated to re-establish consistent connectivity and information flow across the
hierarchies.

23

Operator.delete() (Alg. 32) completely removes an operator—it detaches
itself from its owner, deletes its connections, updates its previous owner, and
finally removes itself.

Input: operators: list < Operator >
Output: Boolean
if class of self is BehaviourFrame then return true;
atLeastOneAction := false;
foreach Operator o ∈ operators do

if class of o is BehaviourFrame then
return false;

else if class of o is Action then
atLeastOneAction := true;

end

end
if class of self is Action then return true;
if atLeastOneAction == true then return false;
return true;

Algorithm 28: Operator.canHost()

Input: to: Operator
if to.canHost({self}) == false then return;
if class of self is Selection then

to.internalSelections.append(self);
else if class of self is Action AND class of to is not Selection then

to.internalActions.append(self);
else if class of self is BehaviourFrame AND class of to is BehaviourFrame then

to.internalBehaviourFrames.append(self);
end
self.owner := to;
self.owner.update();

Algorithm 29: Operator.addTo()

4.2 Adding/Removing Connections

Programmatic relationships are created through setting up connections from
output to input plugs. Thus, selection operators are joined into chains that are
eventually hooked up to the activation plugs ptrigger of behaviour frames or to
the source and target plugs of action operators. A Connection instance refer-
ences an output and an input plug and is itself added to the connection list of
its input and referenced as the connection of an output plug. When connect-
ing an output plug or input plug these dependencies are updated accordingly

24

Input: operators: list < Operator >, target: Operator
if target.canHost(operators) == false then return;
previousOwners := list of copies of operators’ owners;
foreach Operator o ∈ operators do

foreach InputPlug p ∈ o.inputPlugs do
connectedOp := p.getConnectedSelection();
if connectedOp.owner.depth() > target.depth() AND
operators.hasElement(connectedOp) == false then

p.disconnect();
end

end
if class of o is Selection then

foreach OutputPlug p ∈ o.outputPlugs do
connectedPlugs := p.getConnectedInputP lugs();
connectedOps := {};
connectedOpsOutOfReach := false;
foreach InputPlug p ∈ connectedPlugs do

connectedOps.append(p.owner);
if p.owner.owner.depth() > target.depth() then

connectedOpsOutOfReach := true;
end

end
if operators.hasElements(connectedOps) == false AND
connectedOpsOutOfReach == true then

p.disconnect();
end

end

end
if class of o is Selection then

o.owner.internalSelections.remove(o);
target.internalSelections.append(o);

else if class of o is Action then
o.owner.internalActions.remove(o);
target.internalActions.append(o);

else if class of o is BehaviourFrame then
o.owner.internalBehaviourFrames.remove(o);
target.internalBehaviourFrames.append(o);

end
o.owner := target;

end
previousOwners.append(target);
smartUpdate(previousOwners);

Algorithm 30: transfer()

(OutputP lug.connectTo(), InputP lug.connectTo(), Algs. 34 and 33). If an out-
put plug is connected to an already connected input plug, that input plug is
disconnected first.

25

if class of self is Selection then
foreach plug p ∈ self.outputP lugs do

p.disconnect();
end

end
foreach plug p ∈ self.inputP lugs do

if p.isConnected() then p.disconnect();
end

Algorithm 31: Operator.disconnect()

if class of self is Selection then
self.owner.internalSelections.remove(self);

else if class of self is Action then
self.owner.internalActions.remove(self);

else if class of self is BehaviourFrame then
self.owner.internalBehaviourFrames.remove(self);

end
self.disconnect();
self.owner.update();
delete(self);

Algorithm 32: Operator.delete()

When a connection is created, the enclosing host operator needs to be up-
dated, as its internal topology has changed. In case, the connection is part of the
internal topological definition of a selection operator, the execution sequence of
internal operators has to be re-calculated. If the connection is encapsulated by
an action operator or inside a behaviour frame, it plays a role in connecting a
selection operator or a chain of selection operators to one or more actions. The
affected action plugs need to update their dependencies accordingly, as well. No
matter which wrapping operator hosted the connection, it might have to update
its exposed plugs.

When disconnecting an input plug (InputP lug.disconnect(), Alg. 35), the
reference to the corresponding Connection instance needs to be removed from
the connected output plug. Then, the Connection instance is deleted, also setting
the input plug’s reference to nil.

Finally, all the affected non-Selection plugs need to update their upstream
dependencies, since they have changed. And the associated owner’s host needs
to get updated as its exposed plugs might have changed as well. Disconnecting an
output plug, requires the removal of all its connections (OutputP lug.disconnect(),
Algs. 37), including updating the owners of the connected operators as well as
updating any affected input plugs that belong to actions and behaviour frames5.

5 There is no need to update anything inside of the owners of the identified non-
Selection plugs, since the non-exposed plugs do not have any external dependencies.

26

Input: to: OutputPlug
if self.isConnected() then self.disconnect();
self.connection := new Connection(to, self);
to.connections.append(self.connection);
foreach Plug p ∈ self.getAffectedInputP lugs() do

p.orderUpstreamSelections();
end
self.owner.owner.update();

Algorithm 33: InputP lug.connectTo()

Input: to: InputPlug
to.connectTo(self);

Algorithm 34: OutputP lug.connectTo()

self.connection.outputPlug.connections.remove(self.connection);
delete(self.connection);
self.connection := nil;
foreach Plug p ∈ self.getAffectedInputP lugs() do

p.orderUpstreamSelections();
end

Algorithm 35: InputP lug.disconnect()

self.disconnect();
self.owner.owner.update();

Algorithm 36: InputP lug.cleanDisconnect()

foreach InputPlug pin ∈ self.getConnectedInputP lugs() do
pin.disconnect();

end

Algorithm 37: OutputP lug.disconnect()

self.disconnect();
self.owner.owner.update();

Algorithm 38: OutputP lug.cleanDisconnect()

4.3 Creating High-Level Operators

In order to provide powerful programmatic building blocks to the modeller, we
present routines that wrap SwarmScript “circuitry”, including operators and
connections, into higher-level operators. The plugs exposed by a high-level oper-
ator reference the plugs of the internal selections, actions and behaviour frames.
Following this approach, the connection dependencies of newly wrapped opera-
tors and their contexts are automatically maintained.

27

wrapOperators() Alg. 39 wraps a set of selected operators. It first creates an
empty wrapper that is added to the owner of the highest selected operator. It de-
termines which wrapper is needed based on the diversity of selected operators. In
particular, if multiple independent actions or at least one behaviour frame need
to be wrapped, only a new behaviour frame can become their host. One action
or multiple dependent actions can be merged into a new higher level action. In
the latter case, one needs to set the method’s actionSequence argument to true.

Input: operators: list〈Operator〉, boolean: actionSequence
Output: operator
if operators.size() == 0 then return;
actions := {};
selections := {};
behaviourFrames := {};
foreach Operator o ∈ operators do

if class of o is Selection then selections.append(o);
if class of o is Action then actions.append(o);
if class of o is BehaviourFrame then behaviourFrames.append(o);

end
if behaviourFrames.size() > 0 OR
(actions.size() > 1 AND actionSequence == false) then

ptrigger := new Plug(nil, true, source, nil, {}, {});
wrapper := new BehaviourFrame(nil, 0, {}, {}, {}, ptrigger, {});

else if actions.size() == 1 OR actionSequence == true then
wrapper := new Action(nil, 0, {}, {}, {});

else
type := operators.first().type;
wrapper := new Selection(nil, 0, {}, {}, type, {}, false, 0);

end
operators.sort() with ascending depth();
newOwner := operators.first().owner;
wrapper.addTo(newOwner);
transfer(operators, wrapper);
return wrapper;

Algorithm 39: wrapOperators()

Selection Wrapper The internal dependencies and ownership relationships of
a hierarchical selection operator are resolved by means of the Selection.update()
method (Alg. 40). It computes the exposed input and output plugs of the selec-
tion wrapper and takes possession of them. The level of recursion of the wrapper
is determined by the maximal level of any of the internal operators plus one. In
order to ensure that its output plugs will provide values, the internal dependen-
cies need to be pre-computed. In particular, the upstream selection chains are

28

computed for the internal input plugs that are owned by those internal operators
that deliver the output values of the high-level selection operator.

Figure 12 shows these mechanisms in detail. The input plugs coloured in
blue are the ones that feed into internal operators that will provide the output
plugs of the wrapper. The upstream selections of these blue plugs need to be
determined. Any input and output plugs that are not internally connected and
not constant are coloured in red (connections to the outside of the operator
are indicated by red lines). These plugs are adopted and exposed by the new
higher-level operator.

if self.isZeroLevel() == true then
self.owner.update();
return;

end
self.level := 0;
self.inputPlugs := {};
self.outputPlugs := {};
foreach Selection s ∈ self.internalSelections do

self.level := max(self.level, s.level);
s.owner := self;
outputOperator := false;
foreach OutputPlug p ∈ s.outputPlugs do

if p.isInternallyConnected() == false then
p.owner := self;
self.outputPlugs.append(p);
outputOperator := true;

end

end
foreach InputPlug p ∈ s.inputPlugs do

if outputOperator == true then p.orderUpstreamSelections();
if p.isConstant() == false AND
p.isInternallyConnected(self) == false then

p.owner := self;
self.inputPlugs.append(p);

end

end

end
self.level+ = 1;
self.owner.update();

Algorithm 40: Selection.update()

Action Wrapper Hierarchical actions wrap a combination of selection oper-
ators and an action or an action sequence. It is important to understand that
feeding multiple actions into a high-level action are dependent—they form one

29

ABC 3

A 1

C 1

B0 1

B2 0
B3 0

B1 0

B 2

A 1

C 1

level 1

level 2

level 3

interior
exposure
level

Fig. 12. First the four interior selection operators B0...B3 are wrapped into level-2
operator B. Next, A,B, and C are wrapped into the operator ABC. Red plugs at
one level become the exposed plugs at the next higher level. Blue plugs denote those
internal input plugs whose upstream dependencies need to be pre-calculated before the
wrapper can be computed.

high-level action, and thus either none of them or all of them will be executed
(in the given order).

An action operator does not expose any output plugs since it does not provide
information. It rather creates, deletes, or changes information. Therefore, unlike
Selection.update(), Action.update() (Alg. 41) does not consider the output
plugs of any wrapped selections. It solely exposes a wrapped selection’s input
plugs, if they are neither constant nor internally connected. Depending on the
Selection instance’s type (source or target), any adopted input plugs become
source or target plugs of the wrapper, respectively.

If the plug of an internal action is internally connected, its internal dependen-
cies are computed by means of the method orderUpstreamSelections(). If it is
externally connected or not connected at all, it will get exposed by the wrapper.

Updating a behaviour frame is fairly similar to wrapping an action, which
is why Action.update() covers updating behaviour frames as well. Wrapped be-

30

haviour frames are treated exactly as wrapped actions, except for the additional
consideration of the special activation plug ptrigger of a behaviour frame. Since
it algorithmically works like a regular source input plug, it is added to the list
of input plugs and processed, i.e. ignored or adopted, like the other ones.

3

0

4

0

12

self

2

0

"default"

level 2

level 3

level 4

interior
exposure
level

Fig. 13. The combination of interior action and selection operators is wrapped into
a level-3 action which exposes five plugs (coloured red at level-2). The blue plug and
blue connection on level 2 denote the only internal dependencies of the level-3 action.
The process is repeated to forge a level-4 action.

BehaviourFrame Wrapper Wrapping operators into a BehaviourFrame in-
stance is very similar to creating a higher level Action instance as described in
the previous paragraph. However, there are two subtle, but important differences
regarding the semantics of behaviour frames.

31

if self.isZeroLevel() == true then
self.owner.update();
return;

end
self.level := 0;
self.inputPlugs := {};
foreach Selection s ∈ self.internalSelections do

self.level := max(self.level, s.level);
s.owner := self;
for i := 0, i < s.inputP lugs.size(), i + + do

p := s.inputPlugs.get(i);
if p.isConstant() OR p.isInternallyConnected() then continue;
p.type := s.type;
p.owner := self;
self.inputPlugs.append(p);

end

end
informedOperators := self.internalActions.copy();
if class of self is BehaviourFrame then

informedOperators.append(self.internalBehaviourFrames);
end
foreach Operator o ∈ informedOperators do

self.level := max(self.level, o.level);
o.owner := self;
internalInputPlugs := {};
if class of o is BehaviourFrame then internalInputPlugs.append(o.ptrigger);
internalInputPlugs.append(o.inputP lugs);
for i := 0, i < internalInputP lugs.size(), i + + do

p := internalInputPlugs.get(i);
if p.isConstant() then continue;
if p.isInternallyConnected(self) then

p.orderUpstreamSelections();
else

p.owner := self;
self.inputPlugs.append(p);

end

end

end
self.level+ = 1;
self.owner.update();

Algorithm 41: Action.update()

32

1. A behaviour frame can host multiple independent actions. As a consequence,
a behaviour frame does not follow the same algorithmic rules as an action. As
the source and target plugs exposed by a behaviour frame may stem from in-
dependent internal actions, insisting on valid input values before considering
all the wrapped actions for execution would be detrimental.

2. It is the purpose of behaviour frames to allow the modeller to manage group-
ings of arbitrary behavioural “circuitry”. For this reason, they provide an
on/off switch for the consideration of the wrapped behavioural code (Sec-
tion 2.8). A behaviour frame exposes an according special activation plug
ptrigger that is set to a valid value—true in the given case—by default which
activates the behaviour frame. Like a source plug of an action, ptrigger can
be connected to an arbitrary selection, and an input value of nil will prevent
the consideration of the behaviour frame’s contents.

Accordingly, wrapOperators() (Alg. 39) instantiates the Plug instance ptrigger
of type source, with its value set to true. Then the function passes ptrigger to
a newly created behaviour frame. The remainder of the function steps through
the chosen operators, transfers them to the corresponding containers, and finally
updates the new BehaviourFrame instance in order to resolve its internal depen-
dencies and to compute its exposed input plugs. The update of a BehaviourFrame
instance is performed by the Action.update() method discussed above.

smartUpdate() The update() methods work up the hierarchy. Hence, when
updating several operators of one hierarchy, it makes sense to only explicitly call
update() on those operators that hang lowest on different branches. This minimal
overhead approach is implemented by the smartUpdate() procedure (Alg. 42).

5 Simulation Routines

Before entering the simulation phase, the swarm script behaviour can be opti-
mized by pruning away actions and behaviour frames that are not evaluable,
and thus would not impact any simulation processes.

Each simulation step can further be divided into several sub-steps: (1) Com-
puting the chains of selections that feed into the actions and behaviour frames,
(2) identifying triggered actions and behaviour frames, and (3) the actualization
of the triggered actions.

5.1 Initialization

During the simulation phase, the agents’ interactions are computed. Since the
modelling routines update the operators’ dependencies, the simulation process
does not require further initialization. However, actions and behaviour frames
that are not evaluable can be excluded from the set of operators considered
for execution upfront. The BehaviourFrame method BehaviourFrame.update
EvaluableOperators() (Alg. 43) filters the operators contained in a behaviour

33

10

1

self0

0

1 0

0

0

0

1

0

0
0

3 2

1

0 0

true

1
0

2

3

2

0
true

true

0

4true

level 1

level 3

level 4

interior
exposure
level

Fig. 14. The inner operators are wrapped into a level-2 behaviour frame. In addition to
three source plugs and one target plug, the wrapper exposes its activation plug ptrigger.
External connections are coloured in red, blue connections denote the computation of
upstream dependencies of the blue coloured input plugs.

frame accordingly, adding only evaluable operators to its evaluableActions and
evaluableBehaviourFrames containers, respectively. Internally hosted behaviour
frames are filtered recursively, resulting in a complete optimization of the Swarm-
Script code.

5.2 Compute Selections

At each simulation step, the filtered operator hierarchy is searched for actions
and behaviour frames that are successfully triggered. In order to get triggered,
the input plugs of actions need to receive valid values (non nil), as do the
activation plugs ptrigger of behaviour frames.

The computation of a selection (Selection.compute(), Alg. 44) is per-
formed recursively on its hierarchical structure. At each level, the method Se-
lection.compute() (Alg. 44) steps through the operator’s internally ordered
upstream selections that were calculated during the modelling phase by means

34

Input: operators: list < Operator >
branches := {};
foreach Operator o ∈ operators do

branchAssigned := false;
foreach lowestOp ∈ branches do

if o.below(lowestOp) == true then
lowestOp := o;
branchAssigned := true;
break;

else if o.above(lowestOp) == true then
branchAssigned := true;
break;

end

end
if branchAssigned == false then branches.append(o);

end
foreach lowestOp ∈ branches do

lowestOp.update();
end

Algorithm 42: smartUpdate()

of the method orderUpstreamSelections(). On each of those input plugs the
method InputPlug.computeUpstreamSelections() (Alg. 45) is performed
ensuring that all the necessary, upstream linked selections are computed in or-
der and provide the selection operator’s results. A non-hierarchically defined
selection operator (level-0), overrides the Selection.compute() method to store
values in its output plugs, considering the values of possible input plugs.

5.3 Identify Triggered Actions

At this point of the simulation step, all the necessary selection values are pro-
vided and it can be decided which behaviour frames and actions are triggered.
As a result, the hierarchical operator structure is reduced to a list of triggered
actions by means of the function BehaviourFrame.getTriggeredActions()
(Alg. 46). It identifies and collects the triggered actions recursively contained in
any considered behaviour frames.

5.4 Compute and Actualize Triggered Actions

Next, the triggered operators are executed. High-level actions recursively iter-
ate through any internal actions. Level-0 actions, similar to level-0 selections,
need to override the Action.compute() and the Action.actualize() methods
(Algs. 47 and 48). First, these methods process the information the operator
gathers from the source inputs and second, they manipulate the target inputs.
Accordingly, Action.compute() computes the necessary information, and Ac-
tion.actualize() actualizes the changes of the action.

35

self.evaluableActions := {};
self.evaluableBehaviourFrames := {};
for i := 0, i < self.internalActions.size(), i + + do

a := self.internalActions.get(i);
if a.isEvaluable() then self.evaluableActions.append(a);

end
for i := 0, i < self.internalBehaviourFrames.size(), i + + do

bf := self.internalBehaviourFrames.get(i);
if bf.ptrigger.isEvaluable() then

self.evaluableBehaviourFrames.append(bf);
bf.updateEvaluableOperators();

end

end

Algorithm 43: BehaviourFrame.updateEvaluableOperators()

outputSelections := {};
foreach Plug p ∈ self.outputPlugs do

if outputSelections.hasElement(p.zeroLevelOwner) == false then
outputSelections.append(p.zeroLevelOwner);

end
foreach Selection s ∈ outputSelections do

for i := 0, i < s.inputP lugs.size(), i + + do
plug := s.inputPlugs.get(i);
plug.computeUpstreamSelections();

end
s.compute();

end
self.computed := true;

Algorithm 44: Selection.compute()

index := self.upstreamSelections.size()− 1;
while index >= 0 AND self.upstreamSelections.get(index).computed == false
do

index−−;
end
index + +;
for i := index, i < self.upstreamSelections.size(), i + + do

self.upstreamSelections.get(i).compute();
end

Algorithm 45: InputP lug.computeUpstreamSelections()

36

Output: 〈Action〉
triggeredActions := {};
for i := 0, i < self.evaluableActions.size(), i + + do

a := self.evaluableActions.get(i);
if a.isTriggered() then triggeredActions.append(a);

end
for i := 0, i < self.evaluableBehaviourFrames.size(), i + + do

bf := self.evaluableBehaviourFrames.get(i);
if bf.ptrigger.isTriggered() then
triggeredActions.append(bf.getTriggeredActions());

end
return triggeredActions;

Algorithm 46: BehaviourFrame.getTriggeredActions()

Asynchronous actualization (Alg. 49) iterates through the triggered actions
one after another, computes their required parameters based on the provided
selection values and actualizes their changes. This approach does not consider
the impact of step-wise state changes on subsequent actions.

Using synchronous actualization (Alg. 50), the calculation of the actions’ pa-
rameters is concluded during the Action.compute() method, before any changes
are introduced into the system by means of the Action.actualize() method. Fur-
thermore, in order to effectively simulate concurrency, the actualization of state
changes needs to be ordered based on a given priority policy.

for i := 0, i < self.internalActions.size(), i + + do
a := self.internalActions.get(i);
a.compute();

end

Algorithm 47: Action.compute()

for i := 0, i < self.internalActions.size(), i + + do
a := self.internalActions.get(i);
a.actualize();

end

Algorithm 48: Action.actualize()

37

Input: actions: list〈Action〉
for i := 0, i < actions.size(), i + + do

actions.get(i).compute();
actions.get(i).actualize();

end

Algorithm 49: asynchronousActualize()

Input: actions: list〈Action〉
sort actions in accordance with order policy P;
for i := 0, i < actions.size(), i + + do

actions.get(i).compute();
end
for i := 0, i < actions.size(), i + + do

actions.get(i).actualize();
end

Algorithm 50: synchronousActualize()

5.5 Running the Simulation

Before running the simulation, all the given behaviour frames that store all
the agents’ behaviours are filtered for evaluable operators by means of the
updateEvaluableOperators() method. Then, while the simulation is not termi-
nated, all those optimized behaviours are considered for execution at each step
(Alg. 51).

Input: behaviours: list〈BehaviourFrame〉
foreach BehaviourFrame bf in behaviours do

bf.updateEvaluableOperators();
end
while not terminated do

stepSimulation(behaviours);
end

Algorithm 51: runSimulation()

The procedure stepSimulation() (Alg. 52) steps through a list of behaviour
frames, computes the triggered actions and actualizes them. As explained in the
preceding paragraphs, the selections linked to the actions’ plugs need to be com-
puted in order to verify whether an action is actually triggered or not. Therefore,
all the three steps—(1) selection computation, (2) triggered action identification,
and (3) triggered action actualization—are performed by the stepSimulation()
procedure.

38

Input: behaviours: list〈BehaviourFrame〉
forall the Selection instances s do

s.computed := false;
end
actionCache := {};
foreach BehaviourFrame bf in behaviours do

actionCache.append(bf.getTriggeredActions());
end
actualize(actionCache); (*synchronous or asynchronous*)

Algorithm 52: stepSimulation()

