
Optimization of Swarm-based Simulations

Sebastian von Mammen1, Abbas Sarraf Shirazi1, Vladimir Sarpe1, and
Christian Jacob1,2

1 Dept. of Computer Science, Faculty of Science
2 Dept. of Biochemistry & Molecular Biology, Faculty of Medicine

University of Calgary, Canada

Abstract. In computational swarms, large numbers of reactive agents
are simulated. The swarm individuals may coordinate their movements
in a “search space” to create efficient routes, to occupy niches or to find
the highest peaks. From a more general perspective though, swarms are
a means of representation and computation to bridge the gap between
local, individual interactions and global, emergent phenomena.
Computational swarms bear great advantages over other numeric meth-
ods, for instance regarding their extensibility, potential for real-time in-
teraction, dynamic interaction topologies, close translation between nat-
ural science theory and the computational model, and the integration of
multi-scale and multi-physics aspects. However, the more comprehensive
a swarm-based model becomes, the more demanding is its configuration
and the more costly its computation.
In this article, we present an approach to effectively configure and effi-
ciently compute swarm-based simulations by means of heuristic, popu-
lation-based optimization techniques. We emphasize the commonalities
of several of our recent studies that shed light on top-down model op-
timization and bottom-up abstraction techniques, culminating in a the
postulation of a general concept of self-organized optimization in swarm-
based simulations.

1 Introduction

Agent-based modelling techniques have prepared the stage for the systematic
exploration of complex systems. The interconnection of multiple simple, state-
based units, as propagated in cellular automata [53] or random boolean networks
[21], yields complex, a priori unpredictable but iteratively computable system
behaviours. Discretization and confined interaction spaces have rendered a sys-
tematic and comprehensive investigation possible that has provided far-reaching
conceptual insights—most prominently the identification of complexity classes
and the provision of tools for the classification and analysis of complex systems
[22, 55].

Taking the alternative route and trying to consider and integrate even minute
details unearthed by natural scientists and amalgamating them into one compre-
hensive computational model is a daunting task. Yet, steps in this direction have
been successfully taken. Material scientists have paved the road in the field of

2 Optimization of Swarm-based Simulations

multi-scale model integration in order to gain insights into the properties and be-
haviours of compound materials [16]. Biomedical researchers have recently been
taking similar approaches that target numerous scales of human physiology—
from the level of gene expression up to a human population [14]. The integration
of model data different from traditional equation-based systems is also mov-
ing forward. Recent trends in developmental simulations, for instance, integrate
high-level agent behaviours, such as morphogenesis or proliferation, and physical
environmental constraints [3, 54, 39, 51]. Although these simulations are typically
confined to lattice spaces, often even to two spatial dimensions only, they show
considerable promise in retracing natural phenomena of growth and physiological
development.

Unfortunately, one inevitably faces a trade-off between real world phenom-
ena and the intricacies of the corresponding models, between the number of in-
terdependent variables and computational viability—in terms of computational
efficiency and of effectiveness regarding the expected results. Agent-based mod-
els scale particularly poorly with increasing degrees of interaction and increasing
numbers of simulated agents. Due to their numerous advantages, exactly these
two aspects are emphasized in swarm-based models. These large-scale multi-
agent models typically support dynamic interaction topologies, allow the agents
to interact spatially, and they target the transition between local interactions
and emergent global effects. The great variability in swarms not only demands for
special diligence to maintain computational efficiency, for instance by reducing
the search space for interacting individuals based on preceding simulation states
[27]. It also exalts the hardship of formulating and parameterizing the agents’
behaviours—even the execution order of location update and velocity integra-
tion in simple flocking simulations yields fundamentally different global results
[18]. These seemingly two distinct problems can both be tackled by optimizing
the behaviours of swarm individuals.

In this article, we present selected works that show how swarms can be opti-
mized to retrace global effects on the one hand and how they can be optimized to
maintain computational efficiency on the other hand. In particular, the remain-
der of this article is structured as follows. In Section 2 we give a brief overview of
select topics around the optimization of swarms (as opposed to using swarms for
the purpose of optimization). Section 3 demonstrates how swarms can be adapted
to meet specific expectations. In Section 4 we present an approach how swarm
simulations could re-organize themselves during runtime to maintain computa-
tional efficiency. We conclude with a summary of this article and an integrative
outlook on swarm optimization in Section 5.

2 Related Work

The work presented in this article is inspired and motivated by several disci-
plines of computer science and their applications. Craig Reynolds raised a lot
of excitement in the computer graphics community when he demonstrated the
simulation of flocking bird-oids, or boids, at the SIGGRAPH conference in 1987

Optimization of Swarm-based Simulations 3

[36]. Simple acceleration urges steered the boids in accordance with their lo-
cal neighbourhoods through three-dimensionally rendered virtual worlds. The
principles of large numbers of particles attracting and repelling one another in
spatial simulations have also received considerable attention by physicists [10,
8, 43]. In many occasions, Eric Bonabeau, Scott Camazine and their colleagues
built computational swarm models to retrace the biological behaviours of social
insects [5, 7]. Marco Dorigo, James Kennedy their colleagues were forerunners to
apply computational swarms for the purpose of optimization [24, 12].

2.1 Evolution of Constructive Swarms

Some of the mentioned scientists emphasized the applications of computational
swarms for visualization or optimization, others focussed their efforts on the
design of accurate biological models. Bonabeau et al. for instance, designed
agent-based models to examine the nature of the cooperation of social insects. In
models of nest construction, agents deposit particles triggered by environmental
stimuli. Their behaviour was expressed in sets of rules that test the individuals’
neighbourhood situations. Randomly chosen behavioural rules do not yield in-
teresting structures. However, the researchers found rule sets that recreated the
shapes of the different wasp genera’s nests; Epipona, Parabolybia, Stelopoly-
bia, Vespa, Chatergus. Marcin Pilat later added rule sets for the wasp families
Agelaia, Parachatergus, and Vespula [33]. Motivated by the constructive char-
acter of these simulations, some of the authors of this article merged L-systems,
formal production systems to generate plant-like geometric structures [34], with
the interaction dynamics of swarms (swarm grammars, [20]). Similar to the work
in which Henry Kwong and Christian Jacob interactively genetically bred novel
parameter sets for boid flock formations [28], swarm grammars were also bred
interactively and in immersive breeding grounds in three-dimensional space [46,
49].

2.2 Bottom-up and Cross-scale Modelling

Evolutionary breeding techniques have been used to optimize a vast range of
computational models—from random boolean networks [15] and cellular au-
tomata [1] to L-systems [19] and membrane computing models [40]. Despite
their algorithmic and formal universality, the underlying modelling approaches
are designed to reflect special properties of the target systems; random boolean
networks emphasize the interdependencies of genes, cellular automata and L-
systems focus on fixed neighbourhood structures of differentiating cells, whereas
membrane computing models, or p-systems, focus on the processes that occur
between distinct tissues. Computational swarms find applications across scales—
from molecular artificial chemistries to social science simulations—because of
their inherently flexible interaction topologies and the focus on the relationship
between local interactions and global effects. Therefore, Nelson Minar and his
colleagues emphasized their multi-scalar properties and promoted a hierarchical
design approach to swarm models [32].

4 Optimization of Swarm-based Simulations

2.3 Learning Hierarchies

First steps toward the design of emergent multi-scale models—where interac-
tions on one level recursively determine the behaviour of the next higher levels,
as opposed to chaining up differential equation systems that operate at different
levels—were naturally taken in the domain of artificial chemistries. Rasmussen
et al. designed a computational model in which increasingly complex structures
emerge exhibiting novel properties—from monomers to polymers to micelles [35].
Although these experiments clearly retrace the formation of patterns at several
levels of scale, Dorin and McCormack claim that such phenomena are not sur-
prising given the model’s simplicity. Dorin and McCormack argue that it takes
considerably more effort to determine the novelties at higher levels in the hier-
archy [13].

Dessalles and Phan foresaw a system in which detectors would identify emer-
gent patterns in simulations and subsume the activity of the respective lower level
objects [11]. Similarly, Denzinger and Hamdan introduced a modelling agent that
observes the behaviours of other agents and maps them to predefined stereotypes
[9]. Periodic re-evaluations of the agents’ behaviours provided the opportunity
to adjust the mappings in accordance with the dynamics of the system. Not
only might the local interaction patterns change over time, but high-level phe-
nomena might also influence the underlying layers. Lavelle et al. use the term
immergence, or downward causation, to describe the impact of high-level orga-
nizations on entities at lower scales [29]. They postulate that explicit functions
must be defined to bridge between micro and macro levels.

3 Guiding Emergence

Part of the fascination and the scientific value of computational simulation lies
in the prediction of emergent phenomena. The driving computation may be
based on various representations, e.g. mathematical equations, logical facts, or
rule-based interactions. Numeric, iterative simulations can also be used to in-
fer plausible underlying models for a given phenomenon, expressed by means
of the utilized representation. Swarm-based simulations are of particular inter-
est as they are typically setup to bridge the gap between local interactions and
global, emergent properties and processes3. In this section, we present several
approaches to optimize the local behaviours of swarm individuals in order to
retrace predefined emergent phenomena. Hereby, we rely on evolutionary com-
putation techniques and we distinguish between fixed predefined target criteria
and those that change over time.

3 Abduction refers to the corresponding logic-based approach to inferring the under-
lying parts of a model, whereas the field of inverse and ill-posed problems represents
the mathematical, analytical analogue.

Optimization of Swarm-based Simulations 5

3.1 Guiding along 2D Surfaces

Inspired by observations of their natural counterparts, computational swarm
models are often represented in two or three spatial dimensions. As the individ-
uals’ interactions depend on and impact the corresponding, spatially reflected
interaction topologies, swarms lend themselves well for studying emergent phe-
nomena that are graphically representable.

In [48], we showed how a virtual boid flock [37] can be bred so that its individ-
uals maximize the time spent in predefined two-dimensional areas while flocking.
In these experiments (Figs. 1 and 2), each swarm individual, or boid, is depicted
as a triangle that is oriented towards its velocity. It identifies its neighbours
inside of a forward-projected conic field of perception that is determined by a
radius r and an angle α. To some extent, a boid accelerates randomly, however,
its neighbours have a major impact on its trajectory. In particular, a boid fol-
lows an urge to align with its neighbours, to flock toward their geometric centre
(cohesion urge), and to accelerate away from neighbours that are too close. This
separation urge is triggered whenever a neighbour is closer than a given mini-
mal distance. For the given experiment, the alignment, cohesion and separation
vectors are normalized by dividing through the number of neighbours, whereas
the random vector is normalized to a unit-vector. An individual’s acceleration
is computed by the weighted sum of these vectors. As a result, the genotype of
a boid comprises the parameters for the field of perception (r and α), the min-
imum distance dmin, as well as the weight coefficients ccoh, csep, cali, cran and
limit values for both acceleration and velocity, amax and vmax, respectively.

Figures 1 and 2 show boids that were optimized by means of an evolutionary
algorithm to flock in the tiled areas. In Fig. 1(a) the flock breaks up into several
clusters to reach the corners of the simulation space. In a second experiment,
the flock formation shown in Fig. 1(b) achieves a high fitness value due to the
great similarity between its shape and the tiled target area. Another specimen
that was discovered in the second evolutionary setting is presented in Figure 2.
It solved the given, non-symmetrical task utilizing the constraints of the simu-
lation environment, great dispersion but a great degree of connectivity among
the boids. In Figure 2(a) the individuals spread radially from the origin. When
repelled from the edges, the flock breaks into four parts (Fig. 2(b)). To the left
and to the right, new clusters form and head back to the world centre (Fig. 2(c)),
which makes at least one of the clusters pass across the tiles to the left centre of
the simulation space (Fig. 2(c) and (d)).

In order to breed viable boid parameters for homogeneous flocks, we used a
standard Genetic Algorithm (GA) which implemented: (1) Rank-based selection:
70% for the best 20%, 20% for genotypes between 20% and 50% of the ranks and
10% probability for the remainder of the parent population. (2) Recombination
for half the offspring with multipoint crossover, normally distributed across the
genotype. (3) Mutation of previous genotypes for the remaining offspring with
a mutation probability p = 0.2 on single genes. We computed the phenotype
fitnesses based on Equation 1. It sums the collisions of boids on all tiles, up to a
maximum number of collisions per tile, over the course of a simulation. m denotes

6 Optimization of Swarm-based Simulations

(a) (b)

Fig. 1. (a) A flock has learned to swarm to the edges of the simulation space. (b)
The flight in formation of a broad stripe maximizes the flock’s fitness when hitting the
rectangular tiles.

(a) (b)

(c) (d)

Fig. 2. An evolved swarm relies on interactions with the environment in order to hit a
non-symmetrical tiled area.

the number of swarm agents, n the number of tiles, tsim the simulation time, and
the function c() yields the number of collisions between swarm individuals and
an individual tile nind at time step t. In order to promote a smooth distribution
of agents across the given tiles, the fitness evaluation function considers at most
cmax agents on one tile. The final sum is normalized by the number of simulation
steps and the number of swarm agents.

Optimization of Swarm-based Simulations 7

f2D =
1

tsimm

n∑
nind=0

tsim∑
t=0

min(c(nind, t), cmax), with cmax =
m

n
(1)

The genotypes of the three presented cases are detailed in Table 2. The first
one, depicted in Fig. 1(a), yields a high degree of scattered clusters due to the
high cohesion and alignment weights and the narrow perception angle. The third
genotype (Fig. 2) is a descendant of the second one (Fig. 1(a)). Its cohesion and
alignment weights dropped significantly while its perception radius increased to
the maximally possible value. dmin is greater than the actual perception radius in
all three cases which implies that the separation urge was consistently triggered
by all perceived neighbours.

Phenotype α dmin r ccoh csep cali cran vmax amax

Figure 1(a) 0.74 90.28 56.16 4.23 1.62 5.0 0.55 6.51 20.02
Figure 1(b) 1.29 100.0 33.70 0.40 3.96 4.53 4.16 8.32 13.17

Figure 2 3.14 100.0 70.84 0.07 3.25 1.12 3.13 8.91 13.45

Table 1. Genotype vectors of the boid flocks shown in Figures 1 and 2 (rounded to
two decimal places).

3.2 Guiding through 3D Volumes

In [50, 45], we presented an approach to guiding swarm dynamics very similar to
the one in Section 3.1. The model was inspired by work on nest construction in
social insects [5, 7]. In this model, in addition to following the flocking parameters
outlined in Section 3.1, environmental stimuli prompted the individuals to place
or remove cubic building blocks in virtual three-dimensional space (gravitation
was not simulated, intersecting building blocks not allowed). The individuals’
construction behaviour was expressed as if-then rules. The rules’ antecedents
would test the existence of up to five building blocks that were positioned rel-
ative to the acting individual. The consequence of each of twenty allowed rules
could trigger the creation or destruction of a building block at specified relative
coordinates, or it could set or reset the acting individual’s point of focus coor-
dinates. If set, the individual would be accelerated towards the point of focus
alongside of the basic boid urges of alignment, separation, cohesion and some
random acceleration. In addition, we also introduced an acceleration urge toward
the ground that would increase with an individual’s height. cfoc and cgro denote
the weight coefficients for these two additional urges, respectively.

Again, we used a standard GA to breed swarms that were guided by geomet-
rical constraints. This time, the fitness of a swarm was determined by the ratio of
building blocks built inside and outside of a predefined three-dimensional struc-
ture composed of a set of cubes. An initial seed cube marked the site a swarm’s

8 Optimization of Swarm-based Simulations

construction efforts would be measured against. Figure 3 shows the predefined
structures and the swarm-based constructions of two different experiments. In-
stead of multi-point crossover operators, recombination is performed for 40% of
the offspring based on a randomly generated two-point crossover mask that pre-
serves pairs of dependent rules with a greater probability. The number of rules of
the offspring is limited to the smaller number of rules of the parents. The parents
for all the offspring were chosen by means of fitness proportionate selection. In
addition the ten best individuals were always considered as parents (kBest with
k = 10). Mutation is performed per boid gene with a probability of mboid = 0.2,
whereas the conditions, the action, and the action parameter (a relative position)
are considered for mutation independently with a probability mrule = 0.1. In the
evolutionary experiments, we emphasized the coordination of construction and
fixed some of the flocking parameters. In particular, dmin = r = 2.0, α = 2.0,
vmax = 0.5, and amax = 0.3. Please note that for these experiments a different
simulation environment, VIGO [6], was used which resulted in a spatial scaling
factor much smaller than in Section 3.1.

(a) (b) (c) (d)

Fig. 3. Swarm constructions (inner aggregations) are guided by predefined 3D struc-
tures (outer grids).

The construction rule sets of the two independently bred swarms depicted
in Figure 3 were dominated by unconditional and conditional rules for cube
creation. Each of the swarms also set and reset the individuals’ focusses (3 un-
conditional construction rules in (a-b), 4 in (c-d), and 2 conditional ones in
both specimens). In the swarm depicted in Figure 3(a-b), the individuals also
unconditionally removed construction elements in a relative location. Further
information about these rule sets can be found in [45].

Optimization of Swarm-based Simulations 9

Phenotype ccoh csep cali cran cfoc cgro

Figure 3(a),(b) 0.18 0.06 0.30 0.00 0.14 0.17
Figure 3(c),(d) 0.16 0.43 0.16 0.00 0.23 0.12

Table 2. Flocking genotypes of the constructive swarms shown in Figures 3(a),(b) and
(c),(d), respectively (rounded to two decimal places).

3.3 Tracing and Learning Flock Dynamics

The speciality of a swarm is its inherently dynamic interaction topology and
the resulting feedback on its global behaviour. In [47], we analyzed previously
discovered boid flock specimens [28] based on their interaction topologies over
time. We also presented an approach to finding new flock configurations whose
interaction topologies evolved in accordance with predefined functions that re-
flect naturally occurring phenomena such as biological switches and clocks or
timers. In particular, we showed that a step function can be approximated by a
flock’s average neighbourhood degree n̄, if its individuals slowly drift away from
one another and that an oscillating neighbourhood degree can be established by
a pulsating flock. Here, we want to share the latter example, as its characteristic
sequence of phase transitions is especially interesting in the context of complex
simulation research.

As the initial configuration of a complex system may heavily impact the
results of a numeric experiment, we encoded the initial configurations (position,
velocity and acceleration) of individuals as part of a swarm’s genotype, similar
to an epigenetic factor. In order to provide a spatial point of reference, we allow
the swarm to urge toward the world centre, o = (0, 0, 0)T (weighted by cfoc).
This time, we simply configured a Genetic Algorithm with fitness proportionate
selection, incremental mutation and multi-point crossover on all numeric values.
To enforce the approximation of a predefined target function, we computed the

following fitness value:foscillation = 1/
(∑40

t=1 |n̄(t)− x(t)|
)

. Over a period of 40

time steps, the fitness diminishes proportional to the absolute difference between
the target function x(t) and its approximation n̄(t).

Figure 4 shows the neighbourhood function n̄(t) as exhibited by the evolved
swarm configuration listed in Table 3. The oscillation happens as the flock re-
peatedly expands (Figure 5) and contracts (Figure 6). Leaps from a plateau to
a local maximum, as seen at t = 100, occur when formerly separated flocks re-
join. Eventually, at t = 1244, the oscillation ends (Figure 4(b)); this is when the
agents form a tight cluster and start orbiting around the world centre. In order
to facilitate the identification of flocking patterns, we activated motion blurring
in the renderings.

10 Optimization of Swarm-based Simulations

0 20 40 60 80 100 120 t

0

0.2

0.4

0.6

0.8

n

(a)

0 200 400 600 800 1000 1200 t

0

0.2

0.4

0.6

0.8

n

(b)

Fig. 4. (a) The average neighbourhood of a flock n̄ approximates a sine function that
it learned until t = 40. (b) At t = 1244, the flock forms a tight cluster and remains in
an equilibrium with n̄ ∈ [0.35; 0.45].

Phenotype α dmin r ccoh csep cali cran cfoc amax vmax

Figures 5 & 6 2.64 4.12 7.86 0.95 0.53 0.76 0.76 0.36 12.15 7.16

Table 3. Evolved swarm parameters that result in the neighbourhood evolution shown
in Figure 4. The corresponding flocks oscillate though repeated contraction and expan-
sion (Figure 5).

Optimization of Swarm-based Simulations 11

(a) (b) (c)

(d) (e) (f)

Fig. 5. The series of images shows how a swarm in a knot formation expands to two
sides. Eventually, two flocks emerge and head into opposing directions.

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a-b) Two flocks head toward the world centre from opposing directions. (c)
They avoid each other at first. But soon they closely interact again. (The images were
adjusted to fit both flocks, the zoom was slightly increased once for capturing (d-f)).

12 Optimization of Swarm-based Simulations

3.4 Parameter Optimization in a Heterogeneous Predator-Prey
Model

As a test bed for learning the behavioural parameters of heterogeneous swarms,
we chose a classic predator-prey model, in which the populations of prey p and
predator individuals P depend on one another [30, 44]. The Lotka-Volterra dif-
ferential equations (DEs) describe the dynamics of a predator-prey ecosystem
(Equations 2 and 3). In our corresponding, two-dimensional swarm-based model,
both prey and predators wander about randomly. Prey dies when encountering
a predator. It also dies of other causes with probability β at each step of the sim-
ulation, or it reproduces with probability α. Predators prosper from nutritional
encounters with prey individuals and reproduce on the spot with a probability
γ. Their deaths occur with probability δ. The populations of predator and prey
individuals, pinit and Pinit, are initially set to magnitudes between 10 and 500.

dp

dt
= p(α− βP) (2)

dP

dt
= −P (γp− δP) (3)

We reverse engineered the parameters for the swarm model relying on several
algorithms. First, we discretized the continuous results of Equations 2 and 3 by
means of an online time-series segmentation algorithm [25]. We then measured
the similarity value between the time series produced by the swarm-based model
and the segmented differential equation results using a generic Dynamic Time
Warping Algorithm [38, 4]. This measure served as the fitness value to search for
adequate solutions based on Particle Swarm Optimization (PSO) [23].

Different from the experiments presented in Section 3.3, the swarm individ-
uals in this predator-prey model cannot alternate their velocities. Therefore, in
order to approximate a given plot with a fixed time scale, we optimized for
qualitative similarity between the swarm simulation and the DE-system. We
accomplished this by adding the number of simulated steps to the swarm con-
figuration. A single scalar factor suffices to match the evolved and the expected
graphs.

In order to foster robust solutions, we ran each simulation three times for a
given set of parameters and considered the average performance as the particular
swarm’s fitness value. Twenty optimization experiments yielded two prototypical
swarm configurations (Table 4). Their average evolution over the course of one
simulation is depicted in Figure 7. While the overall PSO experiments have
converged on two different solutions, each of them is still close to the DE-based
results. The second class of solutions, Figure 7(b), qualitatively matches the DE
model better as the population of prey individuals recovers at the end of the
simulation. We give credit for this development to the greater reproduction rate
α of prey individuals as seen in Table 4. The shift between the swarm-based
approximations and the DE-based target graphs in Figure 7 is the result of a
relatively generous error threshold for the similarity measures.

Optimization of Swarm-based Simulations 13

Phenotype α β γ δ |pinit| |Pinit| steps

Figure 7(a) 0.38 0.13 0.64 0.18 432.63 317.13 132.63
Figure 7(b) 0.76 0.30 0.69 0.20 436.44 330.64 119.26

Table 4. Average parameters of two classes of swarm-based predator-prey models that
were found using Particle Swarm Optimization (rounded to two decimal places).

nu
m

be
r o

f a
ge

nt
s

time

preyS
predatorS

nu
m

be
r o

f a
ge

nt
s

time

preyDEpredatorDE

nu
m

be
r o

f a
ge

nt
s

time

preyS
predatorS

nu
m

be
r o

f a
ge

nt
s

time

preyDEpredatorDE

(a) (b)

Fig. 7. (a) and (b) show the population dynamics of two prototypical swarm config-
urations compared to the results of the Lotka-Volterra DE model of a predator-prey
system. The results of both modelling approaches had to be scaled to match (see steps
in Table 4), yielding these qualitative diagrams.

4 Abstract and Scale

In the previous section, we demonstrated the optimization of swarm behaviours
in respect to statically measurable outcomes, dynamics over time, and heteroge-
neous system compositions. While the resulting systems may suffice to retrace
and explore certain isolated phenomena, the extensibility of swarms, their intrin-
sic potential to interface with newly introduced elements and to yield high-level
emergent properties renders scalability of swarms another great challenge.

The flexibility of swarm-based modelling comes at a cost. Without further op-
timization, the identification of interaction partners of n swarm individuals alone
yields a computational complexity of O(n2). Typically, the interaction scope of
large numbers of units may, therefore, be drastically reduced. The interaction in
spatial environments are often limited to to the local, discrete neighbourhoods re-
lying on discrete computational modelling approaches such as cellular automata
or cellular potts [2]. However, the ability of the models to continuously change
their interaction topologies among the agents is crucial to capture the systems’
dynamics responsible, for instance, for emergent transportation [43]. Of course,
this confinement does not only apply to spatial interactions but to the number
of dimensions of interactions in general, to the number of individual interac-
tion rules, and to the number of simulated individuals. A system of automated
abstraction, which learns the local patterns and subsumes them as high-level
agents, offers a perspective for a truly scalable computational approach. Instead

14 Optimization of Swarm-based Simulations

of learning behaviours motivated by predefined patterns as exercised in the pre-
vious section, we now demonstrate how emergent patterns that occur among
(properly trained) agents can be learned, rephrased as higher level behaviours,
and utilized to reduce the number of simulated agents.

4.1 Towards Self-organizing Hierarchies

Early on when we started our investigations, we already had a rather clear pic-
ture of our envisioned abstraction framework. It should automatically, and in
a decentralized fashion, create abstractions in a simulation, whenever possible,
and abolish them, whenever necessary. As we imagined it to be primarily de-
ployed in swarm systems, it was obvious to us that the abstractions should be
discovered and managed by special swarm individuals that are immersed into
arbitrary swarm simulations. We termed this concept self-organized middle-out
abstraction approach, or SOMO [52]—“middle-out” referring to the idea that it
would create higher level representations (bottom-up) but also break them down
again (top-down).

However, in order to ensure the validity of our conceptual foundation, we
narrowed down the scope of our first set of experiments [41]. Therein, we iden-
tified correlated nodes in gene regulation networks (modelled by a set of simple
differential equations), approximated their behaviours as groups by means of ar-
tificial neural networks (ANNs) and subsumed the lower level nodes by high-level
agents, or meta-agents. High correlation values between concentrations would
consistently yield higher level agents, whereas drops in the correlation values
of previously grouped nodes resulted in the removal of the respective, outdated
abstraction. Figures 8(a-b) and (e-f) show the results of this greedy approach
when applied to two different MAPK pathway models, one resulting in a sig-
moidal concentration of the MAPK-PP protein [17], the other one in a periodic
expression pattern [26]. The relationship between inaccurate emulation by the
meta-agents and the number of meta-agents in the system is obvious when com-
paring Figures 8(a) and (e): The occurrence of dips in the otherwise smooth
approximative graph triggers the removal of abstractions. In the periodic model,
changes occur too frequently to be accommodated by the meta-agents which
resulted in a high frequency of their creation and removal (Figure 8(d)).

Although the overall performance of the the greedy abstraction approach was
far from satisfactory, it successfully reduced the number of agents in the system.
In our second set of experiments, we attempted to amend the particularly short
lifespans of the abstractions seen in the periodic MAPK model in Figure 8(d).
So we promoted a dynamic management of the learned meta-agent hierarchies
[42]. Whenever a meta-agent became obsolete, it would restore the subsumed,
previously active abstraction hierarchy. Figures 8(c-f) depict the results of this
hierarchical approach. The stepwise restoration of lower-level abstractions is
clearly identifiable in Figure 8(e): At about t = 2250 one meta-agent, which was
trained by means of standard Genetic Programming (GP), is removed and its
two underlying meta-agents are re-introduced into the simulation. Before this
point in time, the learning process consistently built greater abstractions. The

Optimization of Swarm-based Simulations 15

predictions by the meta-agents exhibited greater inaccuracy than in the greedy
case. In addition, the divergence between target graph and approximative results
(Figure 8(c)) does not coincide well with the creation and removal of meta-agents
(Figure 8(e)); it is surprising that yet another hierarchical level is added shortly
after time step t = 2000, even though the preceding emulated concentration
strongly deviated from the target function.

4.2 Immersive Decentralized Abstraction

We believe that the optimization and further the situation-dependent choice of
apt parameter set for the efficient abstraction and hierarchy management neces-
sitate in-depth studies on top of a fully fledged SOMO prototype. Therefore, for
our next experiments, instead of fine-tuning the parameters to optimize the ratio
between agent-reduction and accurate emulation, we searched for a better learn-
ing example—one that allows for the deployment of self-organizing, abstracting
swarm individuals in the context of a swarm simulation. As previous results had
suggested (Section 4.1), linear instead of periodic system dynamics promised
the best results for a prototype SOMO implementation. Hence, we adjusted the
SOMO system and designed swarm individuals that could be immersed into a
swarm simulation of the physiological process of blood coagulation.

In addition to the swarm individuals of the model, or model agents, we de-
signed an observer agent. It observes model agents and logs their interactions
in an interaction history that serves as a database for pattern recognition. An
entry in an interaction history contains, for instance, a reference to the acting
agent A, the executed action act with time stamp t along with the set of inter-
action partners A. In our prototype, the observer applies a k-means clustering
algorithm [31] to find a cluster of overlapping interaction partners as soon as
the interaction history contains a sufficiently large set of logged entries. Once a
cluster is identified, the observer infers a generalized group behaviour from the
logged interaction data: It learns the information that remains fixed across the
set of relevant rules and it identifies boundaries, periodicities and probabilities of
reoccurring variable actions. All the logged interactions that led to the rules of
the newly phrased group behaviour are removed from the lower level individuals
and the observer starts performing on their behalf. Initially, the observer has an
unbiased confidence in a newly learned abstraction. Periodically testing the be-
haviour of the subsumed agents in the current situation lets the observer adjust
this confidence—it grows, if the predictions were correct, otherwise it drops. The
observer fully restores the subsumed agents, should the confidence drop below
a certain threshold. The behavioural subsumption by the observer reduces the
otherwise necessary tests for triggering actions and the search for the respec-
tive interaction partners. Of course, in a deployment scenario, this performance
gain would be measured against the computational overhead for observing model
agents, abstracting, validating, and possibly removing group behaviours.

We immersed the prototype SOMO observer in a swarm-based blood coag-
ulation simulation in which bio-agents aggregate at a wound site and form a
clot (Figure 9). After t = 100, the observer identifies k = 30 clusters in its

16 Optimization of Swarm-based Simulations

G
re

ed
y

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

co
nc

en
tra

tio
n

time

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

co
nc

en
tra

tio
n

time

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

co
nc

en
tra

tio
n

time

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

co
nc

en
tra

tio
n

time

(a) (b)

H
ie

ra
rc

h
ic

a
l

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

co
nc

en
tra

tio
n

time

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

co
nc

en
tra

tio
n

time

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

co
nc

en
tra

tio
n

time

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

co
nc

en
tra

tio
n

time

(c) (d)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 500 1000 1500 2000 2500 3000

nu
m

be
r o

f a
ge

nt
s

time

greedy
hierarchical

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 1000 2000 3000 4000 5000 6000 7000

nu
m

be
r o

f a
ge

nt
s

time

greedy
hierarchical

(e) (f)

Fig. 8. Simulations based on a non-periodic and a periodic MAPK pathway model are
shown on the left-hand and the right-hand side, respectively. Comparisons between the
differential equation system and a greedy (a-b) and a hierarchical (c-d) abstraction
approach are shown. The results of the DE model are indicted by dashed lines, the
agent-based dynamics are depicted as shaded areas. The numbers of agents deployed
by the abstraction approaches are compared in (e) and (f) (individual legends are
provided in these two diagrams).

Optimization of Swarm-based Simulations 17

interaction history and the centroid of the largest cluster is considered to be
the learned group behaviour for which [tmin, tmax] and pexec are inferred. At in-
tervals of ∆ = 10, the observer updates its confidence values; abstractions with
confidence values below τ = 30% are revoked. In this environment, our prototype
successfully identified and abstracted behaviours such as random movement, ex-
ecuted with probability pexec = 100% and t ∈ [0,∞], and state changes induced
by collision (pexec = 77% and t ∈ [90, 95]). Due to the model’s simplicity, the
number of calculated situations over the course of a simulation increases linearly
with the number of incoming bio-agents (introduced by the blood stream). Our
prototype managed to keep this number constant (Figure 10). Its overhead is
shown in the additionally computed situations that occur just before the abstrac-
tion starts (t < 100). The peaks in our proposed method indicate the intervals
at which some model agents are allowed to execute their actions.

o
u
ts

id
e

v
ie

w
in

si
d
e

v
ie

w

t1 t2 t3

Fig. 9. A swarm-based blood coagulation simulation shown from two perspectives at
three consecutive time steps t1...t3.

5 Summary and Future Work

Swarm-based models and simulations bridge the gap between the level of local
interactions and global system behaviours. Instead of programming a swarm sys-
tem, one has to program its individuals, and in such a way that the whole swarm
can accomplish its task. A computational swarm might, for instance, be designed
to retrace and predict natural phenomena, to optimize mathematically phrased
problems, or to support creative design decisions. In this article, we presented
several experiments that elucidate how the behaviour of swarm individuals can
be programmed.

18 Optimization of Swarm-based Simulations

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200

nu
m

be
r o

f s
itu

at
io

ns

time

SOMO prototype
without abstraction

Fig. 10. Number of agent situation evaluations over the course of a blood coagulation
simulation, with and without SOMO abstraction.

First, in Section 3, we focussed on the interplay of globally defined constraints
and the inferred behaviours of locally interacting swarm individuals. Due to the
spatial properties of basic boid swarms, we formulated tasks geometrically to
(1) evolve flocking swarms in 2D and (2) constructive swarms in 3D (by means
of Genetic Algorithms). (3) We introduced a quantitative measure to capture
the neighbourhood dynamics of boid flocks that allowed us to genetically breed
boid individuals that would, in a group, approximate a predefined neighbour-
hood density function. (4) A heterogeneous swarm model of predator and prey
concluded our explorations of guiding emergence; here, a system of differential
equations specified the system dynamics, and the parameters of the two types
of swarm individuals were learned (by means of Particle Swarm Optimization).

In Section 4, we then presented several stages toward an inherently scal-
able approach to swarm simulation, the Self-organized Middle-out abstraction
framework, or SOMO. Here, meta-agents subsume the behaviours of lower level
individuals based on re-occurring interaction patterns in order to reduce the
number of required computation steps. Meta-agents organize themselves in hi-
erarchies that are dynamically built up and broken down, depending on the
demands of the ongoing simulation and the predictive power of the learned ab-
stractions. In our experiments, we first (5) greedily subsumed low-level agents
by meta-agents in an easily verifiable differential equation model of the MAPK
signalling pathway (mitogen-activated protein kinase). (6) We introduced a dy-
namic management of hierarchies so that, upon the identification of an obsolete
abstraction a preceding abstraction is restored instead of resetting all the learned

Optimization of Swarm-based Simulations 19

accomplishments all at once. Finally, we (7) equipped special swarm individu-
als, so-called observer agents, with a behaviour to build and manage abstraction
hierarchies based on interaction histories of groups of monitored individuals.

While examples (1) to (4) emphasize the top-down learning, breeding, or
optimization of the behaviour of swarm individuals, instances (5) to (7) attempt
the opposite; the SOMO approach learns and utilizes patterns that emerge from
local interactions bottom-up, only breaking them down again should it become
necessary. As much as these perspectives might differ, we believe, that they might
serve as forerunners of an algorithmic framework for integrative, large-scale and
multi-scale modelling and simulation. In the last paragraph of this article, we
want to outline how this could work, at the same time implying a suggested
direction of future work in this field.

The more specialized the interaction patterns a SOMO observer is looking
for, the more efficiently will it identify and abstract them. A set of differently
configured SOMO observers spread across the simulation space could evolve
based on their success to abstract in their respective niches—one may assume
that activity is strongly heterogeneous across the interaction dimensions of most
large-scale simulations. At this point, the unsupervised online learning process
of SOMO would be two-tear, considering the accuracy of the generated ab-
straction hierarchies and the configuration of the observer agents. Additional
top-down constraints could be introduced by a second observer type that re-
configures individuals in order to reproduce specific process patterns. Such a
top-down observer could substantially change the original model, so its influ-
ence should be strictly constrained. The conditional introduction and removal
of top-down observers, depending, for instance, on the emergence of certain
high-level behaviours learned by the currently implemented bottom-up SOMO
observers, would enable an external modeller to embed expected milestones into
a bottom-up computed multi-scale simulation and ensure the seamless compu-
tational integration of its scales.

References

1. D. Andre, F.H. Bennett III, and J.R. Koza. Discovery by genetic programming
of a cellular automata rule that is better than any known rule for the majority
classification problem. In Proceedings of the First Annual Conference on Genetic
Programming, pages 3–11, Stanford University, Palo Alto, CA, 1996. MIT Press.

2. Francisco Azuaje. Computational discrete models of tissue growth and regenera-
tion. Briefings in Bioinformatics, 12(1):64–77, 2011.

3. Jacob Beal. Functional blueprints: An approach to modularity in grown systems.
In ANTS 2010: Seventh International Conference on Swarm Intelligence, pages
179–190. Springer, 2010.

4. Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In AAAI-94 Worshop on Knowledge Discovery in Databases (KDD-
94), pages 359–370, 1994.

5. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Nat-
ural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford University Press, New York, 1999.

20 Optimization of Swarm-based Simulations

6. Ian Burleigh. Vigo::3d: A framework for simulating and visualizing of three-
dimensional scenes. http://vigo.sourceforge.net/docs/, October 2008.

7. Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy
Theraulaz, and Eric Bonabeau. Self-Organization in Biological Systems. Princeton
Studies in Complexity. Princeton University Press, Princeton, 2003.

8. A. Czirok and T. Vicsek. Collective behavior of interacting self-propelled particles.
Arxiv preprint cond-mat/0611742, 2006.

9. Jörg Denzinger and Jasmine Hamdan. Improving observation-based modeling of
other agents using tentative stereotyping and compactification through kd-tree
structuring. Web Intelligence and Agent Systems, 4:255–270, 2006.

10. I. Derényi and T. Vicsek. Cooperative transport of Brownian particles. J. Phys. I
(France) Phys Rev Lett, 75:374, 1994.

11. J L Dessalles and D Phan. Emergence in multi-agent systems: cognitive hierar-
chy, detection, and complexity reduction part I: methodological issues. Artificial
Economics, 564:147–159, September 2006.

12. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of
cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 26(1):29–41, 2002.

13. Alan Dorin and Jon McCormack. Self-assembling dynamical hierarchies. Artificial
life eight, page 423, 2003.

14. Thomas Eissing, Lars Kuepfer, Corina Becker, Michael Block, Katrin Coboeken,
Thomas Gaub, Linus Goerlitz, Juergen Jaeger, Roland Loosen, Bernd Ludewig,
Michaela Meyer, Christoph Niederalt, Michael Sevestre, Hans-Ulrich Siegmund,
Juri Solodenko, Kirstin Thelen, Ulrich Telle, Wolfgang Weiss, Thomas Wendl, Ste-
fan Willmann, and Joerg Lippert. A computational systems biology software plat-
form for multiscale modeling and simulation: integrating whole-body physiology,
disease biology, and molecular reaction networks. Frontiers in Physiology, 2(1–10),
February 2011.

15. A. Esmaeili and C. Jacob. A multi-objective differential evolutionary approach
toward more stable gene regulatory networks. Biosystems, 98(3):127–136, 2009.

16. MF Horstemeyer. Multiscale modeling: A review. Practical Aspects of Computa-
tional Chemistry, pages 87–135, 2010.

17. C Y Huang and J E Ferrell. Ultrasensitivity in the mitogen-activated protein kinase
cascade. Proceedings of the National Academy of Sciences of the United States of
America, 93(19):10078–10083, September 1996.

18. Cristián Huepe and Maximino Aldana. New tools for characterizing swarming
systems: A comparison of minimal models. Physica A: Statistical Mechanics and
its Applications, 387(12):2809 – 2822, 2008.

19. Christian Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan
Kaufmann Publishers, San Francisco, CA, 2001.

20. Christian Jacob, Gerald Hushlak, Jeffrey Boyd, Paul Nuytten, Maxwell Sayles, and
Marcin Pilat. Swarmart: Interactive art from swarm intelligence. Leonardo, 40(3),
2007.

21. S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology, 22(3):437–467, 1969.

22. S.A. Kauffman. The origins of order. Oxford Univ. Press New York, 1993.
23. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings., IEEE

International Conference on Neural Networks, volume 4, pages 1942–1948, 1995.
24. James Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm Intelligence. The

Morgan Kaufmann Series in Evolutionary Computation. Morgan Kaufmann Pub-
lishers, San Francisco, 2001.

Optimization of Swarm-based Simulations 21

25. Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An online
algorithm for segmenting time series. In Proceedings of the 2001 IEEE International
Conference on Data Mining, ICDM ’01, pages 289–296, Washington, DC, USA,
2001. IEEE Computer Society.

26. B N Kholodenko. Negative feedback and ultrasensitivity can bring about oscilla-
tions in the mitogen-activated protein kinase cascades. European journal of bio-
chemistry / FEBS, 267(6):1583–1588, March 2000.

27. J. Klein. breve: a 3D environment for the simulation of decentralized systems and
artificial life. In Proceedings of the eighth international conference on Artificial life,
pages 329–334. MIT Press, 2002.

28. Henry Kwong and Christian Jacob. Evolutionary exploration of dynamic swarm
behaviour. In Congress on Evolutionary Computation, Canberra, Australia, 2003.
IEEE Press.

29. Christophe Lavelle, Hugues Berry, Guillaume Beslon, Francesco Ginelli, Jean-
Louis J.L. Giavitto, Zoi Kapoula, A. Le Bivic, Nadine Peyrieras, Ovidiu Radulescu,
Adrien Six, Others, André Le Bivic, Véronique Thomas-Vaslin, and Paul Bourgine.
From Molecules to organisms: towards multiscale integrated models of biological
systems. Theoretical Biology Insights, 1:13–22, 2008.

30. Alfred J. Lotka. Contribution to the theory of periodic reaction. J. Phys. Chem.,
14(3):271–274, 1910.

31. J B MacQueen. Some Methods for Classification and Analysis of MultiVariate
Observations. In L M Le Cam and J Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967.

32. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation
system: A toolkit for building multi-agent simulations. Technical report, Santa Fe
Institute, Santa Fe, New Mexico, USA, 1996.

33. Marcin Pilat. Wasp-inspired construction algortihms. Technical report, University
of Calgary, 2004.

34. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, 1996.

35. Steen Rasmussen, Nils A Baas, Bernd Mayer, Martin Nilsson, and Michael W
Olesen. Ansatz for dynamical hierarchies. Artificial Life, 7(4):329–353, March
2002.

36. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
In SIGGRAPH ’87 Conference Proceedings, volume 4, pages 25–34, 1987.

37. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

38. Hiroaki Sakoe. Dynamic programming algorithm optimization for spoken work
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26:43–
49, 1978.

39. I. Salazar-Ciudad and J. Jernvall. A computational model of teeth and the devel-
opmental origins of morphological variation. Nature, 464(7288):583–586, 2010.

40. V. Sarpe, A. Esmaeili, I. Yazdanbod, T. Kubik, M. Richter, and C. Jacob. Paramet-
ric evolution of a bacterial signalling system formalized by membrane computing.
In CEC 2010, IEEE Congress on Evolutionary Computation, pages 1–8, Barcelona,
Spain, 2010. IEEE Press.

41. Abbas Sarraf Shirazi, Sebastian von Mammen, and Christian Jacob. Adaptive
modularization of the MAPK signaling pathway using the multiagent paradigm.
In PPSN’10: Proceedings of the 11th international conference on Parallel problem

22 Optimization of Swarm-based Simulations

solving from nature: Part II, volume 6239 of PPSN’10, pages 401–410, Dept. of
Computer Science, Faculty of Science, University of Calgary, Canada, September
2010. IEEE Press, IEEE Press.

42. Abbas Sarraf Shirazi, Sebastian von Mammen, and Christian Jacob. Hierarchical
self-organized learning in agent-based modeling of the MAPK signaling pathway.
In Evolutionary Computation (CEC), 2011 IEEE Congress on, pages 2245–2251,
June 2011.

43. Tamás Vicsek and Anna Zafiris. Collective motion. Reviews of Modern Physics,
Submitted: 2010.

44. Vito Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi. Mem. Acad. Lincei. Roma, 2:31–113, 1926.

45. Sebastian von Mammen. Evolving artificial constructive swarms - Experimental
models and methodologies. VDM-Verlag, Saarbrücken, Germany, 2008.

46. Sebastian von Mammen and Christian Jacob. Genetic swarm grammar program-
ming: Ecological breeding like a gardener. In Dipti Srinivasan and Lipo Wang,
editors, CEC 2007, IEEE Congress on Evolutionary Computation, IEEE Press,
pages 851–858, Singapore, 2007.

47. Sebastian von Mammen and Christian Jacob. The spatiality of swarms — quan-
titative analysis of dynamic interaction networks. In Proceedings of Artificial Life
XI, pages 662–669, Winchester, UK, 2008. MIT Press.

48. Sebastian von Mammen and Christian Jacob. Swarming for games: Immersion in
complex systems. In Applications of Evolutionary Computing, Proceedings Part II,
Lecture Notes in Computer Science, pages pp. 293–302, Tübingen, Germany, 2009.
Springer Verlag.

49. Sebastian von Mammen and Christian Jacob. The Evolution of Swarm Gram-
mars: Growing Trees, Crafting Art and Bottom-Up Design. IEEE Computational
Intelligence Magazine, August 2009.

50. Sebastian von Mammen, Christian Jacob, and Gabriella Kókai. Evolving swarms
that build 3d structures. In CEC 2005, IEEE Congress on Evolutionary Compu-
tation, pages 1434–1441, Edinburgh, UK, 2005. IEEE Press.

51. Sebastian von Mammen, David Phillips, Timothy Davison, Heather Jamniczky,
Benedikt Hallgŕımsson, and Christian Jacob. Morphogenetic Engineering, chapter
Swarm-based Computational Development. Springer Verlag, (in press).

52. Sebastian von Mammen, Jan-Philipp Steghöfer, Jörg Denzinger, and Christian
Jacob. Self-organized middle-out abstraction. In Christian Bettstetter and Carlos
Gershenson, editors, Self-Organizing Systems, volume 6557 of Lecture Notes in
Computer Science, pages 26–31, Karslruhe, Germany, 2011. Springer Verlag.

53. John von Neumann and Arthur W. Burks. Theory of self-reproducing automata.
University of Illinois Press, Urbana and London, 1966.

54. Justin Werfel. Biologically realistic primitives for engineered morphogenesis. In
ANTS 2010: Seventh International Conference on Swarm Intelligence, pages 131–
141. Springer, 2010.

55. Steven Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois,
US, United States, 2002.

