
Chapter 18
Swarm-Based Computational Development

Sebastian von Mammen, David Phillips, Timothy Davison,
Heather Jamniczky, Benedikt Hallgrímsson and Christian Jacob

Abstract Swarms are a metaphor for complex dynamic systems. In swarms, large
numbers of individuals locally interact and form non-linear, dynamic interaction
networks. Ants, wasps and termites, for instance, are natural swarms whose indi-
vidual and group behaviors have been evolving over millions of years. In their
intricate nest constructions, the emergent effectiveness of their behaviors becomes
apparent. Swarm-based computational simulations capture the corresponding princi-
ples of agent-based, decentralized, self-organizing models. In this work, we present
ideas around swarm-based developmental systems, in particular swarm grammars,
a swarm-based generative representation, and our efforts towards the unification of
this methodology and the improvement of its accessibility.

18.1 Introduction

Arithmetic operations drive computational processes by updating existing variables
or by infering new ones. The selection of operands determines a topology of depen-
dencies among data which may change over the course of a computational process.
In particular, intermediate computational results may control the flow of directives,

S. von Mammen (B)

Departments of Computer Science,
University of Calgary, Calgary, Canada
e-mail: s.vonmammen@ucalgary.ca

D. Phillips · T. Davison · H. Jamniczky · B. Hallgrímsson
Departments of Cell Biology,
University of Calgary, Calgary, Canada

C. Jacob
Departments of Computer Science and Biochemistry and Molecular Biology,
University of Calgary, Calgary, Canada
e-mail: cjacob@ucalgary.ca

R. Doursat et al. (eds.), Morphogenetic Engineering, Understanding Complex Systems, 473
DOI: 10.1007/978-3-642-33902-8_18, © Springer-Verlag Berlin Heidelberg 2012

474 S. von Mammen et al.

their sources and their targets. Ultimately, the purpose of a computational process
is to create or change information in accordance with goals such as data storage
and retrieval, communication, content creation, or data validation, visualization and
prediction (simulation).

Computational representations are abstraction layers which connect particular
models from a scientific domain (domain models) with corresponding models for a
provided simulation platform (platform models) [46]. Similar to knowledge represen-
tations [50], special representations have been studied and designed in the context
of simulating developmental processes such as the formation of molecular struc-
tures [1], growth and proliferation of cell populations, and structural developments
at the organismal level [48].

Not only do these respective computational developmental representations serve
different modeling domains but they also rely on various mechanisms of abstraction.
L-systems [48], for instance, emphasize the formation of structure based on the gen-
eration of symbolic sequences by means of grammatical substitution [7]. Cellular
automata (CAs), on the other hand, which are also considered one of the first devel-
opmental representations, focus on pattern generation through state changes [67].
Although mitosis and cell differentiation provide a scientifically adequate discretiza-
tion that bridges the gap from domain model to platform model, CAs and L-systems
primarily target development at the cellular level.

Focus areas of developmental models have been simulations of the life cycle of
cells as well as molecular and intercellular communication—touched upon by CAs
and further explored as random boolean networks (RBNs) [34]. Spatial reconfigura-
tion of cell colonies, e.g., through polarization and migration, and thereby changes in
the interaction topologies, also play significant roles in developmental systems [51].

In this chapter, we present our work on swarm grammars (SGs), a developmental
representation that we have introduced to explicitly combine the ideas of established
developmental representations with those of artificial swarm systems. In particular,
production rules drive the life cycle of agents (representative of molecules and cells),
while the agents’ reactivity and motility continuously change the interaction topol-
ogy of the system. In the next section, we briefly outline work that relates to SGs.
Section 18.3 presents various swarm grammar representations that we have designed
over the years, as well as means to breed SG configurations through evolutionary
computation [32, 60, 62, 64]. In this context, we also present SG examples in the
domains of art, architecture and biology [61, 65, 66]. Section 18.4 summarizes and
concludes our work.

18.2 Related Work

In the following, we want to build a terminological hierarchy based on patterns,
structures, and morphologies. A pattern is commonly defined as “an arrangement
or sequence regularly found in comparable objects or events”. A structure is “the
arrangement of and relations between the parts or elements of something complex”.

18 Swarm-Based Computational Development 475

A morphology “[...] deals with the form of living organisms, and with relationships
between their structures” [41]. Morphologies describe the structures of organisms,
whereas the recognition of their structural patterns reveals insight into the complex
arrangements of the parts of an organism. Consequently, the borders blur between
patterns and complex structures when facing the challenges of morphological engi-
neering. Reductionist [23] and quantitative [18] analyses of morphological processes
necessitate identification, measurement [20] and simulation of complex, emergent
processes [46], and integrating, multi-scale models [68]. Exploring these scientific
paths is exciting and important. In this chapter, however, we present our findings that
are mainly concerned with swarm grammars as a unified swarm-based developmental
representation.

18.2.1 Complex Patterns Through State Changes

In cellular automata (CAs) lattice grids are populated with cells that change their
states—frequently represented as a binary digit—in accordance with their neigh-
bors [67]. As underlined by Giavitto et al.’s categorization [16], CAs are dynamic
with respect to their states, but not in regard to their interaction topologies. Thus,
the development in CAs is limited to state-based pattern formation. These patterns,
however, may be seen as structure formation nevertheless. Wolfram introduced four
classes of complexity for patterns generated by the state evolution of one-dimensional
CAs [69]: Those that converge (1) to a homogeneous state (corresponding to limit
points), (2) to a heterogeneous state (corresponding to limit cycles), those that
exhibit (3) chaotic behavior (corresponding to chaotic attractors), and those that are
(4) self-organizing, reaching attractors of arbitrary complexity from random initial
conditions.

18.2.2 Complexity Measures

Several aspects pose starting points to reveal the complexity of a (computational)
model, or the lack thereof. Shedding light on the formation and evolution of high-
order life forms, Schuster summarizes various approaches to measure complexity
[52]: (1) Ecological diversity can lead to systems occupying niches and yield involved
food webs. (2) Construction processes can add to the complexity of a system by
providing additional functionality such as providing shelter. (3) Formally, logical
depth can also measure a system’s complexity. Schuster relates systemic hierarchies
(from genes over cells to organisms) to logical depth and emphasizes its relevance
for biological systems. Hornby aims at the very same idea, introducing the scalable
metrics of modularity, reuse and hierarchy (MR&H), which he applies to measure
structure and organization [20]. In the given context, scalability implies that the
complexity of a system increases with its size. In a series of experiments, Hornby was

476 S. von Mammen et al.

able to show that multiplication of the MR&H metrics and normalization by either
the design size or by the algorithmic information content (AIC), which accounts for
the shortest program to produce a given outcome, yielded the desired scaling effect
in complexity.1

18.2.3 From Life-Cycles to Structure

Although we have introduced the notion of categories of complexity in the context
of CAs (Sect. 18.2.1), L-systems, too, can be subjected to structural measures as
described in Sect. 18.2.2). Lindenmayer and Prusinkiewicz designed L-systems in
order to retrace the growth of bacterial colonies and plants [48]. L-systems are a
formal paradigm that combines the productivity of formal grammars with geometrical
information to direct and translate simulated development into three dimensions.
In particular, symbols that encode a geometrical command such as L (left), R (right)
or F (forward) are substituted in parallel in accordance with a set of production rules.
This is supposed to retrace the developmental stages of a naturally growing structure.
Special characters such as brackets, [and], which are part of the substitution strings,
introduce compartmentalization, i.e., hierarchical information, into the structural
outcome. Generally speaking, L-systems loose the appeal of universality that can
be claimed for CAs by introducing specialized operators that conduct structural
development in an iterative fashion.

At the same time, these geometrical directives render L-systems convenient for
describing structural development of natural systems such as plants [47, 70], includ-
ing simulated plants that interact with their environment [12, 42, 43]. Original
work in genetic programming of L-systems [24–26] has led to several platforms
for L-system evolution [27, 44, 45] and the breeding of virtual plants in a coevolu-
tionary scenario, which even displays competitive arms-race situations [14]. Beyond
plants, L-systems have also been used to evolve virtual creatures and their control
networks [21, 22] as well as for the reconstruction of retina and blood vessel struc-
tures [35, 36].

The appeal of CAs is that the interaction topologies remain fixed, while patterns
develop based on state changes over time. In L-systems, the substitution of existing
symbols effectively results in cell differentiation (state changes), the creation of
new or the deletion of existing symbols. Thus the neighborhood topology can be
altered as well as the next production step in the case of context-sensitive L-systems.
However, changes in the interaction topology in L-systems are limited to the symbols’
immediate neighbors. When modeling molecular diffusion or cell locomotion and
migration in an agent-based manner, interaction topologies undergo great dynamics

1 Ra , the average reuse of symbols during program execution works well as a structural measure
when normalized against the design size, whereas Rm , the average reuse of modules, yields a
scalable measure when divided by the system’s algorithmic information content [20].

18 Swarm-Based Computational Development 477

(e.g., [51]). Giovatti et al. termed D2S such systems in which both the states as well
as the topologies are dynamic [16].

18.2.4 Breeding Solutions

The great degree of freedom with a D2S system brings about the challenge of a
largely extended configuration space. Evolutionary algorithms are a means to find
sets of diverse, good solutions in such large search spaces. We applied genetic pro-
gramming techniques to breed swarm grammar systems interactively [32] through
the EVOLVICA genetic programming framework [27]. We bred swarm gram-
mars like a gardener in a 3D, immersive environment [62]—watering, weeding
and recombining individual specimens that grew in a shared environment. Most
recently, we let swarm grammars evolve to generate diverse and interesting archi-
tectural models [60]. We describe these three evolutionary approaches in detail
as part of the following section, which presents different extensions of swarm
grammars.

18.3 Swarm Grammars

Our first swarm grammar systems were composed of two parts: (1) a set of rewrite
rules, which determined the composition of agent types over time, and (2) a set of
agent specifications, which defined agent-type specific parameters that governed
the agents’ interactions [32]. Next, we assigned the required genotypical infor-
mation and the rewrite rules to individual agents, which allowed for co-existing
and co-evolving swarm grammars [62]. At that point, we identified the distinc-
tion between agent behaviors and rewrite rules as an artificially created artifact
which we had to overcome [60]. As a result, the individuals’ rewrite rules were
extended and turned into general agent rules [10, 11], including the special abil-
ity to create new agents or construction elements and to remove existing ones.
In analogy to biochemical processes of secretion and diffusion [68], we refer
to these abilities as metabolic operations. Lastly, in order to make swarm-based
modeling accessible to non-computer scientists, we have been pushing toward a
standardized swarm-based modeling and simulation framework [64]. In the latter
representation, the relationships among swarm individuals were emphasized and
the swarm agents’ behavioral rules were streamlined and expressed in graphical
notation. In this section, we present these different stages of swarm grammars and
illustrate their respective features. A brief overview of these stages is shown in
Table 18.1.

478 S. von Mammen et al.

Table 18.1 Four evolutionary stages of swarm grammars

Representation Motivation Example Section

Basic swarm grammar Swarm
dynamics+growth

Agent-agent and
agent-environment
interactions, artistic
exploration through
interactive evolution

18.3.1

Decentralized SG Individual behaviors Artistic exploration through
interactive evolution

18.3.2

Decentralized,
rule-based SG

Event-based
interactions

Breeding architecture through
automatic evolution

18.3.3

Swarm graph grammar Improve
accessibility and
standardize
simulation

Simulation of biological
developmental processes

18.3.4

18.3.1 Swarm Grammars with Centralized Population Control

A basic swarm grammar system SG = (SL ,Δ) consists of a rewrite system SL =
(α, P) and a set of agent specifications Δ = {Δa1,Δa2 , ..., Δan } for n types of agents
ai . The rewrite system SL is a probabilistic L-system with axiom α and production
rules P , as described in [48] and [27]. In the simplest form of context-free 0L-systems,
each rule has the form:

p
θ→ s,

where p ∈ Ω is a single symbol over an alphabet Ω , and s ∈ Ω∗ is either the empty
symbol (λ) or a word over Ω . The replacement rule is applied with probability θ . Each
agent ai is characterized by a set of attributes, Δai , which can include its geometrical
shape, color, mass, vision range, radius of perception and other parameters that
determine its overall dynamics and interaction behavior.

18.3.1.1 The Swarm Agents’ Interactions

Figure 18.1 depicts a common view of a swarm agent in 3D space. We configure the
local flight behavior of an agent according to a simple “boids” model as it comprises
the general ideas of local and global attracting and repelling forces [49]. More specif-
ically, at each simulation step, an agent’s acceleration vector a is set to a weighted
sum

∑4
i=0 ci vi , with ci ∈ [0, 1] being the weights for normalized vectors v0 to v4

that result from the computation of separation, cohesion and alignment urges among
local agents, as well as from the individuals’ drive towards a global target and the
consideration of some noise. The weights ci are part of the individuals’ genotypes
as they determine their flight behaviors.

18 Swarm-Based Computational Development 479

Fig. 18.1 The swarm agents
are typically represented as
pyramidal cones oriented
towards their velocity. An
agent’s field of perception is
determined by a radius r and
an angle β

As soon as it has run out of energy, an agent stops acting and is not considered by
the SL-system rules any longer. Energy levels are inherited through replication. The
energy level also influences certain properties of the built 3D structures such as, for
example, their size.

Several values characterize the construction elements or building blocks that are
placed in space by the swarm agent after it has flown for a certain number of itera-
tions Id . The shorter these intervals are, the smoother the appearance of the emerging
construction. The color and numbers of edges define the design of the cylindrical
shapes.

For example, a swarm grammar SGa = (SLa,Δa) with

SLa = (α = A, P = {A → B B B, B → A}), (18.1)

Δa = {ΔA,ΔB} (18.2)

will generate a sequence of swarm composition strings A, BBB, AAA, BBBBBBBBB,
etc. At each iteration step, either each type-A agent is replicated into three B agents,
or agents change from type B to type A. If A agents have no separation urge (c1 = 0),
and B-type agents do separate (c1 = 1.0), the generated swarm of agents creates a
tree-like structure as in Fig. 18.2a. Note that here and in the following examples we
assume θ = 1, that is a matching rule is always applied.

In particular, Fig. 18.2a displays 243 agents—which are visualized as pyramidal
shapes at the branch tips. Both occurring agent types A and B have an upward urge.
Since B-agents repel each other, a bushy crown emerges. Figure 18.2b shows a similar
set of swarm grammar agents that are forced to climb up a wall, which they cannot
penetrate. Once the agents reach to the top of the wall, they are drawn towards a fixed
point above and behind the wall. The small flock of agents is visible just ahead of
the top branches. In Fig. 18.2c, agents are attracted towards a rotating “sun” object,
which makes them follow a spiral during their upward path. The structure on the
right is constructed by a single agent, whereas the left structure involves 20 agents
repelling each other.

Each step applying the production rules (in parallel) represents a decision point for
all agents within the system. Contrary to L-systems [48], where only a single “turtle”

480 S. von Mammen et al.

(a) (b) (c)

Fig. 18.2 Swarm grammar agents interacting with their environment and their corresponding swarm
rewrite systems

is used to interpret a string, we employ a swarm of interacting agents. We do not need
to add navigational commands for the turtles within the grammar strings, because
the swarm agents navigate by themselves, determined by the agent specifications as
part of the SG system. More detailed examples of swarm grammar rewriting that
demonstrate further applicative aspects are given in [32].

18.3.1.2 Interactive Exploration of Swarm Grammar Spaces

Combining swarm systems with evolutionary computing has to our knowledge only
been considered in the context of particle swarm optimization (PSO, e.g., [53, 54])
and in swarm-based music generating systems (e.g., [4, 33]). Emergence of collective
behavior has been investigated for agents within a 3D, static world [57], but this
did not involve interactive evolution. Our Genetic Swarm Grammar Programming
(GSGP) approach incorporates both interactive, user-guided evolution and the use
of emergent properties from interactions among a large number of agents.

The rewrite rules and agent parameters are represented as symbolic expressions,
so that genetic programming (GP) can be used to evolve both the set of rules as well
as any agent attributes. This follows our framework for evolutionary programming,
EVOLVICA [27], where all rewrite rules and agent parameters are encoded as sym-
bolic expressions [39]. For the examples we present here, only context-free rules
with a maximum string length of three (|s| = 3) are applied. We allow at most five
rules and up to three different types of swarm individuals per SG genotype.

18 Swarm-Based Computational Development 481

Fig. 18.3 Screenshot of the Inspirica GUI that enables interactive evolution based on Mathematica
in combination with its genetic programming extension EVOLVICA

Fig. 18.4 Examples of evolved swarm grammar phenotypes: a Pointy yet smooth nodes connect by
long thin branches. b A flower-like structure created by a single mutation. c Spinning and whirling
groups of swarm agents create a woven 3D pattern. d An organismic structure with growing tips

In our evolutionary swarm grammar experiments standard GP tree-crossover and
subtree mutations are the only applied genetic operators [27]. We use an extension
of Inspirica [39], one of our interactive evolutionary design tools, to explore the
potential of the described swarm grammar systems.

Figure 18.3 displays a screenshot of the Inspirica user interface that helps to
interactively evolve swarm grammars. All windows display the construction process
as it occurs. All designs are true objects in 3D space, hence can be rotated, zoomed
and inspected in various ways. After assessment of the presented (twelve) structures,
the swarm designer assigns fitness values between 0 and 10 to each solution, and
proceeds to the next generation. By means of this approach, one can easily—within
only a few generations—create structures as illustrated in Fig. 18.4.

482 S. von Mammen et al.

Fig. 18.5 Examples of the impact of interactive breeding: a and b show two phenotypes that were
interbred and whose offspring c successfully acquired characteristics of both parent structures.
Investigation of the genotypes confirms that a recombinational transfer of a recursively applicable
grammatical rule leads to the complex mesh structure in c

The impact of the inter-breeding process, accomplished through crossovers of the
SL-system grammars and their associated agent parameters, is illustrated in Fig. 18.5.
The replication of a swarm agent (as determined by the grammar) and its associated
constructions cease as soon as it runs out of energy. Since the energy level of an agent
is linked to the radius of the built cylindrical shape, the structures tend to look like
naturally grown, with smaller tips at the ends. If the agents’ energy loss Ie is very low,
however, the radii of the cylindrical objects hardly decrease. Since the energy level is
one possible termination criterion, constructions that keep their radii approximately
constant often appear in tandem with vivid growth. These effects are illustrated in
Figs. 18.2 and 18.4.

18.3.2 SG Individuals with Complete Genotypes

In the previous examples (Sect. 18.3.1.2) swarm grammars were simulated within
separate spaces. In an immersive design ecology, however, one could grow large
numbers of swarm grammar structures in a co-existing and co-evolutionary fashion.
The encountered phenotypes can then result from massive interactions among het-
erogeneous swarms. For this to happen, each swarm agent has to carry the complete
genetic information of a swarm grammar SG = (SL ,Δ), which also allows for
real-time mutations and crossbreeding of specimens in the virtual environment. This
extension of SGs is not unlike in multicellular organisms, where the complete genetic
information is passed from parent to daughter cells, and where the differentiation of
a cell is performed through reading and expressing specific genetic information.

18.3.2.1 Spatial Breeding Operators

Our immersive user interface integrates two aspects: visual representation and intu-
itive manipulation by an external breeder or designer. The latter mechanism is realized
by the already mentioned spatial breeding operators, or breeder volumes. Figure 18.6

18 Swarm-Based Computational Development 483

Fig. 18.6 a By means of volumetric tools the immersed breeder can manually select and tinker
with the present specimens. b Visual cues such as connecting specimens to breeder volumes via
dashed lines allow the breeder to keep track of sets of selected agents

shows a breeder volume that encloses several swarm grammar agents. Swarm agents
that pass through a volume (a sphere in this case) can be influenced in various ways.
We use breeder volumes for the crossover and mutation operators, for moving and
copying swarm agents, and for boosting their energy levels. Analogous to the water-
ing of plants in a garden, fitness evaluations are only given implicitly by providing
more energy to selected groups of agents. In order to facilitate selective evolutionary
intervention, breeder volumes can be placed at fixed positions to perform operations
on temporary visitors with predefined frequencies. Additional visuals allow to keep
track of previous agent selections. Figure 18.6b depicts how previously enclosed
agents remain associated with the appropriate breeder volume. This relationship is
visualized by the connecting lines.

The visualization interface enables moving, rotating, and zooming the camera, or
saving and restoring specific views and scenario settings (Fig. 18.7). Most of these
procedures are already incorporated into the agent software environment BREVE,
which we use as our display and simulation engine [57]. In addition to aspects of
visualization, the supervising breeder is equipped with tools to select, group, copy,
and move swarm grammar agents. This enables the breeder (designer) to influence the
course of evolution within the emerging scenario. The set of possible manipulations
also includes mutation and crossover operators to manually trigger changes of the
genotypes that encode the swarm grammar rules and the agent parameters.

18.3.2.2 The Swarm Grammar Gardener

Figure 18.7 illustrates how a breeder can influence the emerging building processes
within a simple ecology of swarms. In Fig. 18.7a, two swarm agents have built a
cylindrical structure with a small side branch. Both agents, which have run out of
energy, are still visible at the top left and to the right of this construction. In the next
step (Fig. 18.7b), a breeder sphere is introduced so that it encloses the agent on the
right. Through a contextual menu, this agent is “revived” by replenishing its energy
reservoir. Subsequently, the agent resumes its building process, generates an addi-
tional side branch and extends the overall structure farther to the right (Fig. 18.7c).

484 S. von Mammen et al.

(a) (b) (c)

(d)

(e) (f) (g)

Fig. 18.7 Illustration of interactive manipulation of swarm grammar agents by an external breeder.
a Two agents create an initial structure. b A breeder sphere locally infuses energy. c Further growth is
initiated by the additional energy. d, e Replication of an agent triggers further parallel construction.
f, g Expansion of the structure is continued after another energy influx

A similar procedure is applied to the agent on the left. It is captured by the breeder
sphere and triggered to first replicate, i.e., make copies of itself, then resume construc-
tion (Fig. 18.7d, e). This generates further expansions of the structures and—after
more energy boosts (Fig. 18.7f)—gives rise to the structure depicted in Fig. 18.7g.
The pattern continues to grow until the agents run out of energy again.

This is only an example of how external manipulation by a breeder, the “gardener”,
can influence the agent behaviors, thus the building or developmental processes. The
evolution of agents can change their respective control parameters during replication.
Agents of a specific type share a swarm grammar, but agent groups can be copied
as well, so that they inherit a new copy of their own swarm grammar, which may
also evolve over time. This can be accomplished either automatically or through
direct influence from the gardener. Figure 18.8 gives a few examples of evolved
swarm grammar ecologies and extracted structures at different stages during their
evolution.

18.3.2.3 Swarm Constructions in the Arts

In the examples above, the aesthetic judgement of a breeder drove the evolution of
swarm grammars. This works particularly well when an artist searches for innovative
expressions of certain artistic themes. Swarm grammar constructions are special in
that the dynamics of their construction processes are captured within the emerging

18 Swarm-Based Computational Development 485

Fig. 18.8 Collage of designs generated by swarm grammars. The centerpiece illustrates a swarm
grammar garden ecology, within which the surrounding designs were created

structures. Local interactions determine the placement of construction elements and
the flight formations of the swarm. Inherent in any swarm system, the agents’ actions
and reactions result in a feedback loop of interdependencies [63]. The diagram in
Fig. 18.9 hints at the complex relationships that arise in boid systems [49]. Here we do
not even consider indirect communication beyond the ever changing neighborhood
relations among the swarm individuals. A swarm agent i directly perceives a set
of neighbors that determine its acceleration. Its changed location, in turn, affects
those swarm mates that perceive i as a neighbor. The emerging dynamics is captured
in structures that exhibit liveliness and spontaneity, contrasting themes, rhythmic
movements, tension, organic looks, and rigid forms.

Consequently, the artistic interpretation of SG structures can support artistic work
in several ways. For example, we composed pieces of computer-generated SG struc-
tures and traditionally painted motives [65], and looked at inspiring themes and
concepts of artistic works as a whole [66]. Within these explorations—inspired by
the architectural potential of swarm grammars—the artist (S.v.M.) combined a col-
lection of swarm structures to create surreal, artificial worlds (Fig. 18.10a, b). In about

486 S. von Mammen et al.

Perception

Swarm
Agent i

State

Action
S P

S P

S P

S P

S P

S P

neighbors of iagents seeing i

Fig. 18.9 The black arrows in the upper box show the direction of influence between perception,
action and state of a swarm agent i . The S-P tuples stand for the state and perception modules of
other agents that interact with agent i

Fig. 18.10 Diptych of the two pieces a caméléon and b bighorn sheep. Acrylic medium on canvas,
23”×38”. Selections of swarm grammar structures bred for the diptych are displayed in c and d,
respectively (S.v.M., 2008)

40 interactive evolutionary experiments, the artist bred the sets of swarm grammar
structures displayed in Fig. 18.10c, d.

During the evolutionary runs, the artist followed two main objectives. First, robust
looking beams should emerge to form a structural mesh, thus opening vast spaces.
Secondly, fuzziness, continuity and the resemblance to organic forms should warrant
the authenticity of the generated virtual worlds. The color gradients in the background
emphasize the wholesome, fluent structural architecture in Fig. 18.10a and the live-
liness and dynamics caught in the erratic structures of Fig. 18.10b with warm and
cold color palettes, respectively.

18 Swarm-Based Computational Development 487

Fig. 18.11 A behavioral rule
of a swarm grammar agent

<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Construction Rod

Construction Template

Reproduction A B

18.3.3 Rule-Based Swarm Grammars

As a second generalization of our SGs, we wanted to go beyond fixed parame-
ters, such as the regularly timed application of reproduction rules or the continuous
placement of construction elements. SG rules are now expanded by conditions that
each individual agent would relate to, e.g., specific internal states or perception
events. An example of such a rule-based genotype is illustrated in Fig. 18.11. Instead
of continuous construction and regularly timed reproduction, this rule triggers the
reproduction of two agents (types A and B) and the construction of a rod whenever
the acting individual perceives a construction template.

18.3.3.1 Breeding Architecture

Perception-induced rule execution allows for indirect, so-called stigmergic com-
munication by which social insects, such as ants, termites and some wasp and
bee species, are assumed to coordinate large parts of their construction behaviors
[5, 6, 19]. Stigmergy can then be harnessed to create assortments of innovative
architectural SG designs by means of computational evolution [60, 61]. In order to
automatically drive the evolutionary processes, we need a way to assign fitnesses to
SG specimens. There are several aspects that should be taken into account when it
comes to measuring structural complexity, as we have outlined in Sect. 18.2.2.

In addition to the analysis of the genotype of a swarm grammar, two aspects can
be incorporated into the fitness assignment of an evolutionary algorithm: (1) the
construction processes and (2) the emerging structures. Structural analysis is either
very coarse-grained, considering for example the overall volume and the proportions,
or computationally very costly, for instance when attempting to identify hierarchies
and reoccurring modules. Therefore, we put an emphasis on the observation and
classification of the construction processes.

In particular, in a series of SG breeding experiments for architectural design, we
promoted productivity, diversity and collaboration, and prevented computational out-
growth of the generated structure. Our detailed evolutionary approach to automatic
SG evolution is presented in [60]. In order to reward productivity, the SG construc-

488 S. von Mammen et al.

Fig. 18.12 Architectural swarm-built idea models: a conical, flat expansion that emerged from
continuously reproducing agents, b solidified gyration of agents chasing one another, c a typical
specimen formed from stacked layer elements

tions were compared with (simple) pre-defined structures. More specifically, con-
struction elements built inside a pre-defined cubic shape contributed positively to an
SG fitness, whereas constructions outside the cube decreased it. This is similar to an
approach we used in [59]. Diversity was traced as the total number of expressed agent
genotypes, as well as the number of deployed construction materials or construction
mechanisms. In order to foster collaboration between the SG agents, we observed
the numbers of perceived neighbors averaged over all active agents and over time.
Low values of perceived neighbors implied that no direct interactions were taking
place, whereas large values meant that the agents were trapped within small spaces.
Randomly initialized swarm grammar systems can quickly exhaust the provided com-
puting power: Fast, possibly unconditional sequences of SG rule applications may
result in exponential agent reproduction. Temporarily, such explosions of activity
could be beneficial, for example in designs that produce large numbers of ramifica-
tions. In the long run, however, overwhelming demands on computing requirements
have to be avoided. As a simple means to prevent prohibitive outgrowth, yet allow-
ing for temporary leaps of activity, we set a time limit for the computation of one
specimen. Thus, we filtered inefficient SGs during the evolutionary experiments.

Three examples of architectural SG models are displayed in Fig. 18.12. The
flowing and organic shapes built by the bio-inspired, generative SG representation
promise to support the design efforts of architects [58, 61]. Utilizing the extended
swarm grammar model to breed architectural designs is not only interesting from
a creative and innovative perspective on aesthetics, but it also bears the potential
for optimizing architectural designs in respect to ecological and economical aspects.
Such ecological criteria could be temperature regulation and ventilation [15], adap-
tation of building structures to the surrounding landscape, utilization of sun exposed
structures for electric power generation, and other evolvable and measurable fea-
tures [17].

18 Swarm-Based Computational Development 489

Fig. 18.13 We were able to improve our architectural SG experiments by means of our management
and analysis software EvoShelf

18.3.3.2 Driving Evolution with EvoShelf

In order to further the elaboration and analysis of evolutionary design, we have devel-
oped EvoShelf [8], a reliable storage/retrieval system for computational evolutionary
experiments, and a fast browser for genotype and phenotype visualization and eval-
uation (Fig. 18.13). With EvoShelf, we were able to discover that our preliminary
breeding experiments (Sect. 18.3.3.1) tended to produce overfitting SG populations
and predominantly promoted the variety of deployed construction elements.

Figure 18.14a depicts a corresponding, representative FitnessRiver plot that was
created by EvoShelf. Our FitnessRiver visualization method stacks the fitness values
of individuals on top of each other. The fitness of an individual is proportional to
the width of its current. Different colors are used to distinguish between succes-
sive individuals. Discontinuing currents indicate the removal of an individual from
the evolutionary process. In the FitnessRiver visualization, the x-axis represents the
sequence of generations. The shown plot exposes stagnating and fluctuating fitness
development after about 100 generations. A bias towards specific construction mate-
rials deployed by the SG specimens could be identified in star plots representing
phenotypic features as seen in the corners of the SG visualizations in Fig. 18.14b.
Based on these investigations, we are able to adjust our fitness functions and the
configuration of our breeding experiments [8].

18.3.4 A Streamlined, Accessible Swarm Simulation Framework

Rule-based swarm systems seem to be a good fit to capture biological models
[28–31]. However, there are several hurdles that make it hard to deploy swarm models
in fields outside of computer science:

490 S. von Mammen et al.

0 50 100 150 generation

tn
es

se
s

(a)

0 10 20 30 40

50 60 70 80 90

100 120 140 160 180

200 220 240 260 280

(b)

Fig. 18.14 EvoShelf provides the user with quick visualization methods for global fitness trends
and local comparisons, as in a the FitnessRiver plot and b star plots of the specimens’ features,
respectively

1. The predicates and actions that drive the simulations—e.g., the detection of a
chemical signal or the deposition of a particle—depend on the modeling domains
and usually have to be re-implemented for different experiments. Still, many of
these operations can be abstracted, parametrically adjusted and reused in different
contexts. The integration of these operations into a rule-based formalism also
makes it possible to utilize functionality from various computational engines
such as physics engines or general differential equation solvers within a single
modeling framework.

2. Depending on the degree of specificity of a rule’s condition and its associated
actions, a theoretically simple interaction can result in an over-complicated rep-

18 Swarm-Based Computational Development 491

predicateX

predicate Z
(>6)

p = 0.3

t = 4
predicateY

predicateX

actionJ
actionK

initialize

gr
ow

not mature

p = 1.0

t = 1 grow

m
at

ur
e Growth

Factor

close to p = 1.0

t = 1

(>0)

mature
produce
mitogen

pr
ol

if
er

at
e

initialize

mitogen

p = 1.0

t = 1 reset

(a) (b)

Fig. 18.15 a An SGG rule that queries the reference node itself (orange), other individuals (grey)
and sets of interaction candidates. The consequence of the rule defines the interactions, such as
deletion of nodes and initialization of a new node. b Three rules to describe a simple developmental
process model

resentation. A graphical description of the predicates and the associated actions
can amend this issue.

3. As swarm simulations often exhibit complex behaviors, small details—for exam-
ple the order of execution and the discretization steps in a simulation—can greatly
influence the outcome. Therefore, we think it is crucial to design models based
on a unified algorithmic scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the chal-
lenges discussed above [64]. SGGs provide a graphical, rule-based description lan-
guage to specify swarm agents and a generalized algorithmic framework for the
simulation of complex systems. Fundamental operations such as the creation or dele-
tion of programmatic objects, as provided by formal grammars, are part of the SGG
syntax. Through SGGs we can capture (metabolic) functions at multiple biological
scales. We can capture processes of secretion and diffusion [68] as well as consump-
tion/removal and production/construction [37]. As a consequence of the graph-based
syntax, SGGs capture the simulation state in a global graph at each computational
step. Thereby, the continuous re-shaping of an interaction topology of a dynamic
system is traced and interdependencies that emerge over the course of a simulation
can be represented graphically.

18.3.4.1 SGG Rule Description

An SGG agent’s behavior is described by a set of rules (Fig. 18.15). Each rule tests
a set of predicates (solid edges on the left-hand side) and executes a set of actions
(dashed edges on the right-hand side) in respect to the acting agent itself (refer-
ence node) or other agents. Nodes represent individual agents or sets of agents. In
Fig. 18.15, the acting agent is displayed as an orange node with a black border. Other

492 S. von Mammen et al.

agents or agent groups are depicted as grey nodes. The application of the rule is asso-
ciated with a frequency and a probability. Sets of predicates can attempt to identify
an arbitrary number of agents. The relative location, i.e., the 2D coordinates, of the
node on the left-hand side of the rule is matched with its appearance on the right-
hand side of the rule. If a node does not reappear on the right-hand side, it implies
that its corresponding agent has been removed. If a node appears at a location that
is unoccupied on the left-hand side, a new node is created. Figure 18.15a shows an
example rule. This rule is applied with a probability of p = 0.3 at every fourth time
step (Δt = 4) of the agent simulation.

One (arbitrarily chosen) node that fulfills predicateX and predicateY is affected
by actionJ and actionK. Also note that a new node is created and is initialized, for
which no reference had existed before. In case there are at least 6 nodes that fulfill
predicateZ, they will all be removed.

18.3.4.2 Swarm-Based Embryogeny and Morphological Development

Swarm graph grammars enable us to closely collaborate with researchers from other
disciplines such as architecture, biology or medical sciences. Following the foot-
steps of previous works in artificial embryogeny and morphogenetic engineering
[2, 3, 9, 13, 38], we have begun to investigate simulations of biological devel-
opmental processes. In a series of (at this point naive) experiments, we integrated
high-level SGG agent behaviors (growth, maturation and proliferation) with physical
mechanics (collision and impulse resolution). Figure 18.15b shows the applied SGG
rules which configure cells to grow until they reach maturity (predicates: not mature
and mature). Mature cells that are close to a Growth Factor increase their internal
mitogen concentration which in turn instigates proliferation (modeled as reset of the
acting cell and initialization of a second cell).

Accordingly, in the simulation shown in Fig. 18.16, tissue cells (blue: not mature;
red: mature) within the vicinity of a signaling molecule (green) start to proliferate.
Collision resolution through an embedded physics engine allows the cells to assem-
ble2. The emerging protuberance is slanted to the right in accordance with the initial
distribution of signaling molecules.

Initially, we were surprised to see that the protuberance in Fig. 18.16 turned out
symmetrical, despite its one-sided development. We speculated that this was due to a
lack of simulated cell polarization. However, after a series of systematic simulations,
we found out that the effects of polarization, in combination with proliferation,
would still be overturned by the physics interactions and again result in spherically
distributed, aggregated cells (Fig. 18.17).

Using this same agent-based approach, we have begun tracing embryogenic devel-
opments in mice. Volumetric embryo data provides a basis to populate initial tissue
layers with cells (Fig. 18.18). Basic intra- and inter-cellular interactions then dic-

2 In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org.

http://bulletphysics.org

18 Swarm-Based Computational Development 493

t = 177 t = 385 t = 695

t = 1287 t = 1754 typical interaction graph
(here for t = 500)

Fig. 18.16 The proliferation of mature cells (blue premature; red mature) is dependent on the
proximity to growth factors (green). At any time of the simulation, large numbers of agents are
informed by growth factors leading to typically dense but homogeneous graphs that reflect their
interactions

(a) (b) (c)

(d) (e) (f)

Fig. 18.17 a–c Show the same proliferation process as in Fig. 18.16 but with only one initial cell
(growth factors are illustrated as black cubes); d–f Show two simultaneously growing protuberances,
whereas the cells on the right-hand side obtain a polarization aligned towards the polarization signal
to the right (black box)

tate the shaping of existing and the creation of new tissue layers as shown in the
mesh-deformation in Fig. 18.19.

494 S. von Mammen et al.

Fig. 18.18 a We start with a volumetric scan of a mouse embryo, b zoom into the region of interest
and c, d populate it with swarm agents

Fig. 18.19 Spatial configuration a post, b during, and c post interaction

Here, sentient swarm agents play the role of vertices on a graphical surface. In
this context, dynamic mesh generation and manipulation could become part of the
agents’ sets of possible actions [56].

18.4 Summary and Conclusion

Inspired by the construction abilities of social insects, we started investigations into
virtual constructive swarms [32]. We designed swarm grammars (SGs) as a com-
putational developmental representation that combines the ideas of artificial swarm
simulations3 with the compositional regulation expressed by formal grammars [7].
L-systems are a prominent approach to translate formal grammars (rewrite rules)
into the realm of developmental models [40] (Sect. 18.3). SGs allow for completely

3 Artificial swarms can be considered a special case of agent-based modeling with a focus on large
numbers of locally interacting individuals and the potential of emergent phenomena which cannot
be inferred from the individuals’ abilities.

18 Swarm-Based Computational Development 495

unrestrained interaction topologies and provide a simple way to integrate interac-
tions beyond population control and fixed local neighborhood relationships, which
represents an expansion from the more constrained L-systems.

In an iterative process of unification and extension of the initial swarm gram-
mar representation, we first incorporated a complete swarm grammar genotype into
each swarm agent (Sect. 18.3.2), then started describing its behavior as a set of
perception-reaction rules (Sect. 18.3.3). The original idea of using grammatical pro-
duction to determine the composition of the swarm population became part of a more
generic agent-based representation [10, 11]. To even further the modeling capacity of
swarm-based simulations, we designed swarm graph grammars (SGGs) as a means
to graphically represent swarm agent interactions and to explicitly model inter-agent
relationships that might influence the dynamics of the simulations (Sect. 18.3.4).
Swarm graph grammars provide a modeling language that can be used for interdis-
ciplinary investigations. In a collaborative project, we have begun tracing complex
developmental processes in mice (Sect. 18.3.4.2).

An expanded degree of freedom in SG representations required systematic explo-
ration of configuration spaces. We addressed this challenge by means of compu-
tational evolution [32, 62, 60]. In particular, we relied on interactive evolution
to explore structural spaces (Sect. 18.3.1.2) that inspired artistic works [65, 66]
(Sect. 18.3.2.3). We furthered this approach by the possibility to breed large swarm
grammar ecologies in virtual spaces (Sects. 18.3.2.1 and 18.3.2.2). We promoted
structural complexity by considering the frequency and diversity of interaction
processes among swarm agents in order to generate interesting architectural designs
(Sect. 18.3.3.1). More systematic investigations in accordance with scalable com-
plexity measures as outlined in Sect. 18.2.2 might yield a better performance in the
context of breeding innovative designs.

With the evolution and exploration of swarm grammars, we have been building
methodologies and toolkits that support modeling and simulation of developmental
systems in a multitude of domains. Evolutionary computation techniques enable us to
find swarm system configurations to trace more or less desired or innovative outcomes
for artistic or scientific simulations. However, we are aware that there are several
major obstacles to be addressed before our methodologies can become instrumental
for broad application. Currently, we focus on two issues. First, we attempt to reduce
the computational complexity that inevitably arises from offering a very generous
and expressive representation [55]. Second, we are constantly engaged in improving
the usability and accessibility of our modeling representation itself.

References

1. Banzhaf, W.: Artificial chemistries—towards constructive dynamical systems. Solid State Phe-
nom. 97, 43–50 (2004)

2. Bentley, P.J., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an
evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999) (1999)

496 S. von Mammen et al.

3. Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In:
Proceedings of the 10th International Conference on the Simulation and Synthesis of Living
Systems (ALIFE X) (2006)

4. Blackwell, T.: Swarming and music. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Com-
puter Music, pp. 194–217. Springer, London (2007)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Sys-
tems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New
York (1999)

6. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton Studies in Complexity. Princeton University
Press, Princeton (2003)

7. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3),
113–124 (1956)

8. Davison, T., von Mammen, S., Jacob, C.: Evoshelf: a system for managing and exploring
evolutionary data. In: Proceedings of Parallel Problem Solving from Nature (PPSN) (2010)

9. De Garis, H.: Artificial embryology: the genetic programming of an artificial embryo. In:
Soucek, B. (ed.) Dynamic, Genetic, and Chaotic Programming. Wiley, New York (1992)

10. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior with situation-
action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society (2000)

11. Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative character
behavior. In: CIG. IEEE (2005)

12. Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., Prusinkiewicz, P.: Realistic
modeling and rendering of plant ecosystems. In: SIGGRAPH 98, Computer Graphics, Annual
Conference Series, pp. 275–286. ACM SIGGRAPH (1998)

13. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by
embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing. Springer, Berlin (2007)

14. Ebner, M.: Coevolution and the red queen effect shape virtual plants. Genet. Program Evolvable
Mach. 7(1), 103–123 (2006)

15. Farmer, G., Guy, S.: Visions of ventilation: pathways to sustainable architecture. Department
of Architecture, University of Newcastle upon Tyne, Newcastle upon Tyne (2002)

16. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. Biosys-
tems 70(2), 149–163 (2003)

17. Gowri, K.: Green building rating systems: an overview. ASHRAE J. 46(11), 56–60 (2004)
18. Hallgrímsson, B., Boughner, J.C., Turinsky, A., Parsons, T.E., Logan, C., Sensen, C.W.: Geo-

metric morphometrics and the study of development. In: Sensen, C.W. (ed.) Advanced Imaging
in Biology and Medicine, pp. 319–336. Springer, Heidelberg (2009)

19. Hölldobler, B., Wilson, E.O.: The Ants. Springer, Berlin (1990)
20. Hornby, G.S.: Measuring complexity by measuring structure and organization. In: Srinivasan,

D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 2017–2024. IEEE
Press, Singapore (2007)

21. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a generative encoding.
In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo,
M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pp. 868–875. Morgan Kaufmann, San Francisco
(2001)

22. Hornby, G.S., Pollack, J.B.: Evolving l-systems to generate virtual creatures. Comput. Graph.
25, 1041–1048 (2001)

23. Hu, D., Marcucio, R.: A SHH-responsive signaling center in the forebrain regulates craniofacial
morphogenesis via the facial ectoderm. Development 136(1), 107 (2009)

24. Jacob, C.: Genetic l-system programming. In: PPSN III–Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, vol. 866, pp. 334–343. Springer, Jerusalem (1994)

25. Jacob, C.: Evolving evolution programs: Genetic programming and l-systems. In: Koza, J.R.,
Goldberg, D.E., Fogel, D.B., Riolo, R. (eds.) Genetic Programming 1996: First Annual Con-
ference, pp. 107–115. MIT Press, Cambridge, Stanford University, Palo Alto (1996)

18 Swarm-Based Computational Development 497

26. Jacob, C.: Evolution and co-evolution of developmental programs. Computer Physics Com-
munications, Special Issue, Modeling Collective Phenomena in the Sciences (1999) 121–122,
46–50

27. Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

28. Jacob, C., Barbasiewicz, A., Tsui, G.: Swarms and genes: Exploring λ-switch gene regulation
through swarm intelligence. In: CEC 2006, IEEE Congress on Evolutionary Computation
(2006)

29. Jacob, C., Burleigh, I.: Biomolecular swarms: an agent-based model of the lactose operon. Nat.
Comput. 3(4), 361–376 (2004)

30. Jacob, C., Litorco, J., Lee, L.: Immunity through swarms: Agent-based simulations of the
human immune system. In: Artificial Immune Systems, ICARIS 2004, Third International
Conference. LNCS 3239, Springer, Catania (2004)

31. Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentralized defenses
of immunity. In: Artificial Immune Systems, ICARIS 2006, 5th International Conference.
Springer, Oeiras (2006)

32. Jacob, C., von Mammen, S.: Swarm grammars: growing dynamic structures in 3d agent spaces.
Digital Creativity: Special issue on Computational Models of Creativity in the Arts 18(1), 54–64
(2007)

33. Jones, D.: Atomswarm: a framework for swarm improvisation. In: Giacobini, M., et al. (eds.)
Applications of Evolutionary Computing, pp. 423–432. Springer, Heidelberg (2008)

34. Kauffman, S.: The Origins of Order. Oxford University Press, New York (1993)
35. Kókai, G., Tóth, Z., Ványi, R.: Modelling blood vessel of the eye with parametric l-systems

using evolutionary algorithms. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt,
J.C. (eds.) Artificial Intelligence in Medicine, Proceedings of the Joint European Conference
on Artificial Intelligence in Medicine and, Medical Decision Making, AIMDM’99, 1620, pp.
433–443 (1999)

36. Kókai, G., Ványi, R., Tóth, Z.: Parametric l-system description of the retina with combined
evolutionary operators. In: Genetic and Evolutionary Computation Conference, GECCO-99.
Orlando, Florida, USA (1999)

37. Kumar, S., Bentley, P. (eds.): On Growth. Form and Computers. Elsevier Academic Press,
London (2003)

38. Kumar, S., Bentley, P.: Biologically inspired evolutionary development. Evolvable Systems:
From Biology to Hardware, pp. 99–106. Springer, Heidelberg (2003)

39. Kwong, H., Jacob, C.: Evolutionary exploration of dynamic swarm behaviour. In: Congress on
Evolutionary Computation. IEEE Press, Canberra (2003)

40. Lindenmayer, A.: Developmental systems without cellular interactions, their languages and
grammars. J. Theor. Biol. 30(3), 455–484 (1971)

41. McKean, E. (ed.): The New Oxford American Dictionary. Oxford University Press, Oxford
(2005)

42. Mech, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In:
SIGGRAPH’96, pp. 397–410. ACM SIGGRAPH, New York (1996)

43. Michalewicz, M.T. (ed.): Plants to Ecosystems: Advances in Computational Life Sciences.
CSIRO Publishing, Collingwood (1997)

44. Michel, F., Beurier, G., Ferber, J.: The turtlekit simulation platform: application to complex
systems. In: Proceedings of Workshop Sessions at the 1st International Conference on Signal
& Image Technology and Internet-Based Systems (IEEE SITIS05), pp. 122–128. IEEE Press,
Canberra (2005)

45. Mock, K.J.: Wildwood: the evolution of l-system plants for virtual environments. In: IEEE
Conference on Evolutionary Computation, pp. 476–480. IEEE Press, New York (1998)

46. Polack, F.A.C., Andrews, P.S., Ghetiu, T., Read, M., Stepney, S., Timmis, J., Sampson, A.T.:
Reflections on the simulation of complex systems for science. In: ICECCS 2010: Fifteenth
IEEE International Conference on Engineering of Complex Computer Systems, pp. 276–285.
IEEE Press, Canberra (2010)

498 S. von Mammen et al.

47. Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: Visual models of plant development.
In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Springer, New York
(1997)

48. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg
(1996)

49. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph.
21(4), 25–34 (1987)

50. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, Upper
Saddle River (2010)

51. Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Curr. Top. Dev. Biol.
81, 342 (2008)

52. Schuster, P.: How does complexity arise in evolution. Complex 2(1), 22–30 (1996)
53. Settles, M., Nathan, P., Soule, T.: Breeding swarms: a new approach to recurrent neural network

training. In: GECCO ’05: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, pp. 185–192. ACM Press, New York (2005)

54. Settles, M., Soule, T.: Breeding swarms: a ga/pso hybrid. In: GECCO ’05: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pp. 161–168. ACM Press, New
York (2005)

55. Shirazi, A.S., von Mammen, S., Jacob, C.: Adaptive modularization of the mapk signaling
pathway using the multiagent paradigm. In: Proceedings of Parallel Problem Solving from
Nature (PPSN) (2010)

56. Smith, C.: On vertex-vertex systems and their use in geometric and biological modelling. Ph.D.
thesis, University of Calgary (2006)

57. Spector, L., Klein, J., Perry, C., Feinstein, M.: Emergence of collective behavior in evolving
populations of flying agents. In: Genetic and Evolutionary Computation Conference (GECCO-
2003), pp. 61–73. Springer, Chicago (2003)

58. Van der Ryn, S., Cowan, S.: Ecological Design. Island Press, Washington (2007)
59. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3d structures. In: CEC

2005, IEEE Congress on Evolutionary Computation, pp. 1434–1441. IEEE Press, Edinburgh
(2005)

60. von Mammen, S., Jacob, C.: Evolutionary swarm design of architectural idea models. In:
Genetic and Evolutionary Computation Conference (GECCO) 2008, pp. 143–150. ACM Press,
New York (2008)

61. von Mammen, S., Jacob, C.: Swarm-driven idea models—from insect nests to mod-
ern architecture. In: Brebbia, C. (ed.) Eco-Architecture 2008, Second International Con-
ference on Harmonisation Between Architecture and Nature, pp. 117–126. WIT Press,
Winchester (2008)

62. von Mammen, S., Jacob, C.: Genetic swarm grammar programming: Ecological breeding like
a gardener. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Compu-
tation, pp. 851–858. IEEE Press, Canberra (2007)

63. von Mammen, S., Jacob, C.: The spatiality of swarms—quantitative analysis of dynamic inter-
action networks. In: Proceedings of Artificial Life XI, pp. 662–669. MIT Press, Massachusetts
(2008)

64. von Mammen, S., Phillips, D., Davison, T., Jacob, C.: A graph-based developmental swarm
representation & algorithm. In: ANTS 2010: Seventh International Conference on Swarm
Intelligence. Springer, Heidelberg (2010)

65. von Mammen, S., Wissmeier, T., Wong, J., Jacob, C.: Artistic exploration of the worlds of
digital developmental swarms. LEONARDO (2010)

66. von Mammen, S., Wong, J., Jacob, C.: Virtual constructive swarms: compositions and inspi-
rations. In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2008,
Lecture Notes in Computer Science, vol. 4974, pp. 491–496. Springer, Berlin (2008)

67. von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University of Illinois
Press, Urbana and London (1966)

18 Swarm-Based Computational Development 499

68. Walker, D.C., Southgate, J.: The virtual cell-a candidate co-ordinator for ’middle-out’ mod-
elling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)

69. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)
70. Yu, J.: Evolutionary design of 2d fractals and 3d plant structures for computer graphics. Master’s

thesis, Department of Computer Science, University of Calgary (2004)

	18 Swarm-Based Computational Development
	18.1 Introduction
	18.2 Related Work
	18.2.1 Complex Patterns Through State Changes
	18.2.2 Complexity Measures
	18.2.3 From Life-Cycles to Structure
	18.2.4 Breeding Solutions

	18.3 Swarm Grammars
	18.3.1 Swarm Grammars with Centralized Population Control
	18.3.2 SG Individuals with Complete Genotypes
	18.3.3 Rule-Based Swarm Grammars
	18.3.4 A Streamlined, Accessible Swarm Simulation Framework

	18.4 Summary and Conclusion
	References

