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Abstract
The typically large numbers of interactions in agent-based simulations come at considerable computational costs. In this
article, we present an approach to reduce the number of interactions based on behavioural patterns that recur during
runtime. We employ machine learning techniques to abstract the behaviour of groups of agents to cut down computa-
tional complexity while preserving the inherent flexibility of agent-based models. The learned abstractions, which sub-
sume the underlying model agents’ interactions, are constantly tested for their validity: after all, the dynamics of a
system may change over time to such an extent that previously learned patterns would not reoccur. An invalid abstrac-
tion is, therefore, removed again from the system. The creation and removal of abstractions continues throughout the
course of a simulation in order to ensure an adequate adaptation to the system dynamics. Experimental results on biolo-
gical agent-based simulations show that our proposed approach can successfully reduce the computational complexity
during the simulation while maintaining the freedom of arbitrary interactions.

Keywords
agent-based simulation, collective behaviour, abstraction, optimization, online learning

1. Introduction

Phase transitions in complex systems cannot be inferred

from the properties of the underlying parts. Rather they

occur due to the interactions of the involved variables.1

The agent-based modelling approach is a well-suited

means to model complex systems, as it provides each part

of the system with the ability to change its own state and

to interact with other parts. Agent-based computational

models have also gained great popularity as they can

address heterogenous populations, noise, spatial and tem-

poral relationships.2–5

The flexibility of agent-based models renders their

simulation computationally inefficient.6 As each agent

could potentially interact with all of the other n agents,

merely identifying who interacts with whom becomes a

computationally expensive task: O(n2) in the worst case.

To overcome this problem, agent-based simulations are

often limited to fixed neighbourhoods in discrete lattice

spaces as implemented by cellular automata.7–9 However,

the ability of a model to continuously change the interac-

tion topology among the agents is crucial to trace, for

instance, the dynamics of transportation effects10 or devel-

opmental processes.11

In this article, we present an approach to apply machine

learning techniques such as evolutionary algorithms,

neural networks, and clustering in order to reduce the

computational costs of an agent-based simulation while

preserving its inherent flexibility. In particular, we show

how groups of agents that exhibit behavioural patterns can

be reduced to single agents with (computationally) simpli-

fied interaction rules. In order to identify a group of agents

that can be substituted by a single agent, either neighbour-

ing agents form a group or, more generically, an observer

agent monitors arbitrary groups of agents and substitutes

them based on their exhibited behavioural patterns. As the

agents’ interactions may vary over time, the learned beha-

vioural patterns may lose their validity. Therefore, confi-

dence values determine the lifespan of the learned
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behavioural abstractions. Continuous re-evaluation of

these confidence values allows for a self-organized optimi-

zation process in which the substitutions are adaptively

created and revoked.

The remainder of this paper is organized as follows.

Section 2 reviews related works in multi-agent modelling

and abstraction. In Section 3, we first show how we can

use artificial neural networks (ANNs) to learn the collec-

tive behaviour of agent groups. Next, we present an

approach that relies on genetic programming (GP) and

manages agent hierarchies dynamically, i.e. it does not

destroy the learned abstractions completely should their

confidence values drop, but only incrementally, as needed.

In this context, we also elucidate the algorithm that ensures

the validity of any learned patterns. Section 4 further

refines the introduced approaches to consider arbitrary

types of agent interactions including collisions and state

changes. In order to demonstrate the effectiveness of this

refined approach, we apply it to an agent-based blood coa-

gulation simulation. Finally, concluding remarks are pre-

sented in Section 5.

2. Related work

Abstract knowledge represents higher-order patterns that

occur in lower-level concepts. It bears the essence of a sys-

tem and ignores unnecessary details.12,13 Higher-order pat-

terns emerge from the interactions of the parts, or agents,

of a system.4 In natural systems the formation of higher-

order patterns happens across several scales of time and

space, which renders their complete description impossi-

ble. However, it has been suggested that one could approx-

imate the multiple scales of natural systems and their

interdependencies by means of computational models that

incorporate hierarchies of agents. High-level agents in

such hierarchies correspond to high degrees of abstraction

of the system processes. In this section, we briefly describe

some of the related works that motivated or addressed this

concept.

2.1 From bottom-up to abstract models

Artificial chemistries14 and computational developmental

systems, such as L-systems,15 relational growth gram-

mars,16 or swarm grammars,17 explicitly, often visually

trace the emergence of high-level structures based on sim-

ple constituents. These constituents may be represented as

formal symbols or as entities in physics simulations.

Complex interaction patterns can emerge from even the

most simple interactions. Autocatalytic networks, for

example, denote patterns of chemical reactions that nur-

ture one another.18 Stable interaction networks may even

exhibit the property of self-replication.19 As a result, the

formation of intertwined entities is promoted and hierar-

chies of increasing complexity emerge in nature.20

Rasmussen et al. designed a computational model

based on artificial chemistries, in which structures are

formed with an increase in complexity and with different

functionalities: from monomers to polymers to micelles.21

Although these experiments clearly retrace the formation

of patterns at several levels of scale, Dorin and

McCormack claim that such phenomena are not surprising

given the model’s simplicity. Dorin and McCormack

argue that it takes considerably more effort to determine

the novelties at higher levels in the hierarchy.22

A first step toward the identification of high-level pat-

terns is to gain clarity about the abstractions inherent in an

agent model to begin with. Bosse et al. propose the classi-

fication of types and levels of abstraction of agent-based

models based on the following dimensions:23

The process abstraction dimension deals with the

behaviour representation of an agent, e.g. whether an

agent is modelled by its inputs and outputs, whether

other variables like beliefs or desires are also consid-

ered, or whether even lower level properties of an agent

are modelled.

The temporal dimension deals with the definition of

the agents’ behaviours over smaller or longer periods

of time.

The agent cluster dimension specifies the granularity

of the agent-based model, i.e. whether an individual

agent represents an entity or a cluster of entities.

Ralambondrainy et al. identify the complex task of obser-

ving a simulation, for which they propose a separate multi-

agent system.24 They describe an ontology to facilitate the

communications of the agents in the second system. The

observation agents have three main tasks, namely (1)

acquisition of observational elements, (2) processing of

simulation results, and (3) presentation of the results to

human actors. Although the second system does not affect

the original simulation, the notion of a separate system

with the ability to present higher-level, abstract knowledge

emphasizes the necessity to have external observers in the

simulation.

Several approaches rely on a priori definitions to iden-

tify emergent patterns in agent-based simulations. Servat

et al. acknowledge that simulation states can provide clues

for the introduction and configuration of high-order

agents.25 However, they insist on the necessity to prede-

fine the behaviours of high-level agents. The same is true

for Chen et al.’s formalism which they specifically use for

validating predicted behaviours.3,26

In order to capture emergent phenomena, Dessalles and

Phan foresaw a system in which detectors would identify

emergent patterns and subsume the activity of the respec-

tive lower level objects.1 Similarly, Denzinger and Hamdan

introduce a modelling agent that observes perceivable
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behaviours of other agents and maps them to a predefined

stereotype.27 However, Denzinger and Hamdan also present

a novel aspect: The periodic re-evaluation of the agents’

behaviours gives the modelling agent the opportunity to

adjust the mappings in accordance with the dynamics of the

system. Not only might the local interaction patterns

change over time, but high-level phenomena might also

influence the underlying layers. Lavelle et al. use the term

immergence, or downward causation, to describe the impact

of high-level organizations on entities at lower scales.28

They postulate that explicit functions must be defined to

bridge between micro and macro levels.

Cardon proposes three organizational levels to control

the behaviour of a multi-agent system.29 The constituent

agents are defined in the aspectual level. A geometrical

mapping of aspectual agents forms the second level called

the morphological level. Using a simplified, higher-level

representation of agents in the morphological level, analy-

sis agents in the evocation level identify the current state

of the simulation and control the agents in the aspectual

level by tampering their behaviour. This approach provides

self-adaptability in the system while enforcing a degree of

control on the behaviour of the system as a whole.

von Mammen et al. introduced the concept of self-orga-

nized middle-out abstraction (SOMO), where observer

agents monitor the interaction history of sets of agents, use

motif discovery to detect recurrent patterns, and create

hierarchies of high-level agents that subsume the lower

interacting agencies.30 Although they do not exclude the

possibility of a relationship between learned high-order

patterns and emergent phenomena found in nature, SOMO

primarily targets an increase of efficiency by repeatedly

substituting groups of agents by individual high-level

instances that work at lower computational costs.

The authors of the present article have previously

demonstrated that high-level agent substitution indeed

results in a reduction of computational cost.31,32 In particu-

lar, we deployed ANNs and GP, two established inductive

learning methods, to learn agent abstractions in a model of

a biological signaling pathway. Clusters of biological sub-

strates and their corresponding activation patterns were

substituted by meta-agents. We recently extended our ear-

lier implementation by introducing observer agents that

are able to abstract arbitrary patterns of groups of agents.6

2.2 Toward a framework for multi-scale modelling

As technology advances the design of multi-scale models

becomes more prominent. As long as these approaches

merely connect models of different scales and feed back

and forth the computed results as variable parameters, the

challenge can be addressed with the right level of domain

knowledge and software engineering skills.33,34 As dis-

cussed in Section 2.1, there are only few concepts that

address the issue of automatic identification and

abstraction of emergent patterns, which is crucial for a

system that would identify new levels as a result of the

computational process.

Martins et al. review different multi-scale models (from

biomolecules to cells, tissues and organs) and conclude

that despite the lack of a quantitative model of a cell, such

models may help understand cancer growth and its

therapy.35 Erson and Cavusoglu propose a software frame-

work for multi-scale model integration and simulation;36

however, no specific modelling technique is described.

There are a few physical multi-scale models, e.g. CPM37

and Synergetics.38 However, as of yet, there is no univer-

sally adopted computational framework for the assembly

of multi-scale biological models.39

Bassingthwaighte et al. identify a systems approach for

developing multi-scale models which includes six steps:40

(1) the definition of the model at its highest level of reso-

lution, (2) the abstraction of patterns (‘‘reduced-form mod-

ules’’), (3) the identification of valid parameter ranges of

these abstractions, (4) the observation of the variables of

the system, (5) replacement of higher-resolution models

with abstractions, and (6) the validation of the perfor-

mance of the multi-scale model against available real-

world data. The authors further discuss open challenges of

their approach such as parameter identification in closed-

loop systems and the identification of input–output delays.

3. Abstraction in the MAPK signaling
pathways

A signaling pathway describes how information travels

from the receptors of a cell to an inside target.41 Typically,

the information ripples through a cascade of biochemical

reactions that are carried out by enzymes. The mitogen-

activated protein kinase (MAPK) pathway plays a key role

in the cell cycle and is documented extensively. It is

responsible for responses to extracellular stimuli and regu-

lates cellular activities, such as gene expression, mitosis

and differentiation.8 In the MAPK signaling pathway pro-

posed by Huang and Ferrell,42 a hypothetical enzyme E1

stimulates the cell and results in an increase in production

of the MAPK-PP enzyme (Figure 1(a)). In another

model,43 a negative feedback loop causes sustained oscil-

lations in the production of MAPK-PP (Figure 1(b)).

The diagram in Figure 1 describes the interaction topol-

ogy of substrates. Numerical differential equation solvers

are used to calculate their concentration updates over the

course of time. For example, the update formula for the

MAPK-PP concentration is given as follows:

d½MAPK � PP�=dt= v8 � v9 ð1Þ

v8 = k8 · ½MKK � PP� · ½MAPK � P�
K8 + ½MAPK � P� ð2Þ

526 Simulation: Transactions of the Society for Modeling and Simulation International 89(4)



v9 = V9 · ½MAPK � PP�
K9 + ½MAPK � PP� ð3Þ

where k8, K8, V9, and K9 are constants and [X ] is the cur-

rent concentration of substrate X . The complete set of

update equations can be found in Huang and Ferrell42 and

Kholodenko.43

Amigoni and Schiaffonati present three approaches to

multi-agent simulations of the MAPK pathway.41 In the first

approach, each chemical reaction is represented as an agent.8

The second approach translates each intracellular component

into an agent that uses a blackboard mechanism44 to interact

with other agents in the system.45 In the third model, each

molecular entity acts as an agent.46 For our model, we fol-

low the last approach and consider each substrate a loosely

defined, independent agent. Their behaviours are determined

by the interaction graphs shown in Figure 2 and the update

formulas given in Equations (1)–(3).

3.1 Creating meta-agents

In our system, an agent maintains a list of all of its neigh-

bours and it logs their respective interactions in so-called

interaction histories. It weighs the relationships with its

neighbours based on its correlation coefficient. A correla-

tion coefficient between two statistical variables indicates

their linear dependency. A correlation coefficient of zero

implies that two variables are independent, whereas ± 1

indicates highly correlated variables. The greater the cor-

relation between two variables, the more similar is their

function. Given a series of n measurements of agents s and

Figure 1. (a) The MAPK signaling pathway42 and (b) The MAPK signaling pathway with a negative feedback.43

MKKK

MKKK-P

MAPK-PP

MKK

MKK-PP

MAPK

MAPK-P

MKK-P

MKKK

MKKK-P

MAPK-PP

MKK

MKK-PP

MAPK

MAPK-P

MKK-P

(a) (b)

Figure 2. Agent interaction graphs for the MAPK signaling pathways of Figure 1.
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t in the form of si and ti, where i= 1, 2, . . . , n, their corre-

lation coefficient (ρst) is defined as follows:

ρst =
Pn

i= 1 (si � �s)(ti ��t)

(n� 1)σsσt

ð4Þ

where �s and �t are the mean values, and σs and σt are stan-

dard deviations of s and t, respectively.

Algorithm 1 Meta-agent creation.
m = current agent;
Agent new agent;
Queue q;
q.Enqueue(m);
new agent.Add(m);
while !q.empty() do

Agent head = q.Dequeue();
for all Agent s in head do

for all Agent t in s.Neighbours() do
if |ρst| ≥ τedge then

new agent.Add(t);
q.Enqueue(t);

end if
end for

end for
end while
return new agent;

Algorithm 2 Validity monitoring.
m = current agent;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do

if |ρst − ρ′
st| > τvalid then

needToBreak = true;
break;

end if
end for

end for

if needToBreak then
simulation.remove(m);
for all Agent s in m do

simulation.add(s);
end for

end if

Each agent periodically checks whether its correlation

coefficient with each neighbour is greater than some

threshold τedge. If this is the case, they form an initial

meta-agent. This heuristic process is repeated in order to

identify a cluster of agents that are highly correlated

(Algorithm 1). Figure 3 shows an example in which Agent

A finds Agent C and Agent E, and they form a meta-agent.

The set of new neighbours is the union of all neighbours

of the underlying nodes.

3.2 Learning the group behaviour

A new meta-agent replaces its underlying agents and inter-

acts on their behalf. In order to approximate the subsumed

agents’ group behaviour, a learning algorithm such as

ANNs, evolutionary algorithms, or motif search in time

series can be deployed. The learning algorithm extracts

the group behaviour from the interaction histories that are

locally stored with each agent.

3.3 Monitoring the validity of modules

Owing to changes in the overall system, meta-agents might

exhibit invalid behaviours at some point. Therefore, we

check the validity of each meta-agent periodically by com-

paring its deployed behaviour with its expected behaviour.

The correlation coefficients of the underlying agents serve

as a heuristic indicator as they triggered the formation of

the meta-agent (ρ0st). According to Algorithm 2, we com-

pare the current correlation coefficients of the meta-agent

to previous values for each individual agent: if the differ-

ence is larger than some threshold, we consider the meta-

agent invalid. As a consequence, we break down its hierar-

chy and set its underlying agents free.

3.4 Results

To validate the performance of our approach, we con-

ducted a series of experiments on both MAPK models.

The experiments are determined by the following five

parameters (Table 1): we let the system run for some time

twait and then start looking for meta-agents within a given

time interval �find . The waiting time twait is important as

the system has to reach a rather stable condition before the

abstraction algorithm starts to work. We keep monitoring

the system in predefined intervals, �monitor. In order to

integrate agents and to form meta-agents, the correlation

coefficient between two agents, or the value of an edge in

the interaction graph, should be greater than some thresh-

old τedge. Finally, a meta-agent is valid as long as its corre-

lation coefficients with its neighbours do not exceed the

original correlation coefficients by a threshold τvalid .

Working values for τvalid and τedge have been found

through trial and error (Table 1).

3.4.1 ANN learning. First, we present an experiment that

utilizes feed-forward ANNs with the back-propagation

learning algorithm47 to train meta-agents. The structure of

528 Simulation: Transactions of the Society for Modeling and Simulation International 89(4)



an ANN is determined by its inputs and outputs as well as

the number of nodes in the hidden layer. Since agents in

our model are not aware of their dependent agents (they

only know about their outgoing edges in the interaction

graph), the output of the network should simply be all of

the underlying agents. In the example shown in Figure 3,

outputs are Agents A, C and E. The input nodes of the net-

work are composed of all of the internal and their exter-

nally connected nodes (Agents A, C, D and E in Figure 3).

As for the number of nodes in the hidden layer, we follow

a simple rule-of-thumb and set it to the number of

inputs+ 2.

Figure 4(a) shows the result of applying our approach

to the first MAPK model in terms of the number of agents.

Initially, there are eight model agents in the system. We

use the term ‘‘model agent’’ to emphasize their role in the

original model, as opposed to meta-agents that are intro-

duced as part of the abstraction process. The identification

of meta-agents starts at twait = 1200. The resulting pattern

of periodic creation and destruction of meta-agents (Figure

4(a)) stems from the fact that a meta-agent’s probability to

become invalid increases with its number of subsumed

model agents. In general, a meta-agent becomes invalid

even if one of its subsumed agents becomes invalid.

Therefore, after the system is reduced to a single meta-

agent, it breaks and releases all of the eight model agents.

Figure 4(b) shows that the concentration computed by

the agent-based pathway model successfully resembles

that of the partial differential equation (PDE) solver.

Figure 4(c) shows the result of the same algorithm for the

second MAPK pathway. Since this model is periodic, the

algorithm successively finds, trains and breaks meta-

agents over time. The great number of spikes in Figure

4(c) implies that the meta-agents are only valid for a short

period of time.

3.4.2 GP learning and dynamic hierarchies. In a second

experiment, we utilize GP to find the function that approx-

imates the group behaviour subsumed by a meta-agent.

We include four mathematical operations (+ , -, *, /) in
the function set of the GP algorithm, whereas the internal

nodes of the interaction graph serve as the available term-

inals. Using a heuristic learning algorithm such as GP

enables us to control the speed of learning and to perform

a distributed search for good solutions.

The qualitative difference of this second approach com-

pared with the presented ANN approach is the introduction

of dynamic agent hierarchies. Previously, the destruction

of a meta-agent set free all of the associated model agents.

Now, meta-agents store references to their underlying

model agents only in the first instance of the learning pro-

cess. Meta-agents that subsume lower-level meta-agents

store those instead, which results in a hierarchy of meta-

agents with the original model agents as its leaves. When a

meta-agent becomes invalid and is destroyed, its

-0.7 τ = 0.8

-0.9

0.7

0.5
0.9

A

E

D

BCA

E

C-0.9
0.9

0.8

0.7

Meta-Agent

0.5

D

B

Group
Behaviour-0.7

(a) (b)

Figure 3. Example of an interaction graph. The edges denote the correlation coefficients. (a) Agent A, Agent C, and Agent E form a
meta-agent. (b) The new neighbours of this meta-agent are Agent B and Agent D.

Table 1 . Model parameters.

Parameter name Symbol Value in
the first

Value in the
second

MAPK model MAPK model

Delay before
finding
meta-agents

twait 1200 1500

Meta-agent
finding interval

�find 300 300

Monitoring
interval

�monitor 20 20

Validity
threshold

tvalid 0.1 0.1

Edge
threshold

tedge 0.95 0.7
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underlying agents, whether meta-agents or model agents,

are released back into the simulation (Figure 5).

Figure 6(a) compares the performance of the hierarchi-

cal and the previously presented non-hierarchical

approach. After twait = 1200, the non-hierarchical approach

reduces the number of agents faster, but it cannot maintain

any of the abstractions once the meta-agent becomes inva-

lid at around t = 1700 and t= 2500. When the hierarchical

meta-agent becomes invalid, its underlying hierarchy is

restored: a single meta-agent breaks down at t= 2200 and

releases 4 meta-agents back into the system (compared

with 8 model agents). In both experiments, a meta-agent

subsuming the behaviour of a larger number of agents

becomes invalid very fast. This explains why an all-

encompassing meta-agent does not stay long in the system

(2100< t < 2200 in Figure 6(a)). Figure 6(b) shows the

MAPK concentration over time produced by the hierarchi-

cal approach and compared to the results of the PDE

solver.

As Figure 6(c) shows, both experiments performed

similarly on the second MAPK pathway. The number of

spikes in both approaches suggests that neither learning

method makes a significant difference in case of periodi-

city. We reason that the short period of validity in both

presented approaches is the result of using the correlation

coefficient to measure how closely two agents work

together. Since the correlation coefficient varies from �1
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Figure 4. Adaptive modularization results for the MAPK pathway models of Figure 1: (a), (c) number of agents; (b), (d)
concentration of MAPK-PP.

Hierarchical
Learning

Non-hierarchical
Learning

Figure 5. Difference between the non-hierarchical and the
hierarchical approach to agent abstraction: when a non-
hierarchical agent is destroyed, all of the associated model
agents are released back into the simulation (shown at the
top). In the other case (at the bottom), the hierarchical
configuration stored with a meta-agent is restored resulting
in one meta-agent and one model agent.
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to + 1 over a periodic signal, it fails to capture the similar-

ity of two agents in a periodic system. This result suggests

that we have to look for other indicators when dealing with

a periodic system.

4. Self-organized middle-out learning and
abstraction

In the third approach, we introduce observer agents, or

observers, that coexist alongside of the model agents in

the simulation space (Figure 7). The simulation framework

treats both kinds of agents equally, i.e. each of these agent

types is considered for interactions at each simulation step.

Instead of an external algorithm (Section 3.4.2), the obser-

ver agents now handle the creation and management of

abstraction hierarchies based on the interaction processes

performed by model agents.

Once an observer successfully identifies an interaction

pattern, it acts as a meta-agent that replaces the individual

behaviours previously maintained by the model agents that

led to the identified pattern. Acting as a meta-agent, the

observer itself becomes subjected to observation. In order to

verify their validity, observers would check whether the

deployment of the subsumed individual behaviours would

yield an outcome different from the predictions of the learned

pattern. If the discrepancy between these two outcomes

exceeds a given threshold, the observer omits its learned pat-

tern and restores the subsumed individual behaviours.

The success of the abstraction system depends on the

configuration of the deployed observer agents. In the fol-

lowing paragraphs, we explain one way how they can

replace the individual behaviours with a group behaviour

and how the observer agents can validate, maintain, or

abandon the learned patterns throughout the course of a

simulation.

4.1 Observer configuration

Like any other agent in a multi-agent system, an observer

can be defined as ag = (Sit,Act,Dat, fag), a 4-tuple com-

posed of a set Sit of situations, a set Act of actions, a set

Dat of internal data, and a decision function fag
48. At any

point in time, the agent decides to perform an action based

on its situation and internal data. This decision is captured

in a decision function fag : Sit×Dat→Act. In rule-based

agent architectures, Dat can be re-written as Intvar×RS,

where Intvar is a set of values for internal variables and

RS is a set of interaction rules:
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Figure 6. Results for the MAPK pathway model of Figure 1: (a), (c) number of agents (solid line: our hierarchical approach; dashed
line: non-hierarchical approach proposed by Sarraf Shirazi31); (b), (d) concentration of MAPK-PP.
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if condition then execute act,

where act ∈Act, and condition is a statement about the sit-

uation the agent is in and the actual values of the variables

in Intvar. Both condition and act might involve other

agents called interaction partners.

Observers are configured to log the interactions of

model agents in their interaction histories: IHExec is used to

log executed interactions, whereas IHNExec logs the num-

bers of considered but not executed actions (Tables 2 and

3). An IHExec entry may contain any information related to

an observed interaction. For instance, an observer may

store that the model agent A executed an action act∈Act

with time stamp t along with the set of interaction partners

A.
An observer extracts group behaviours from the logged

data by applying a pattern recognition algorithm. In this

section, we present results based on clustering, which will

be explained next.

4.2 Learning and abstraction

In our prototype, an observer logs interaction partners in

combination with the time of the interaction. Once the

interaction history IHExec has grown beyond a certain

threshold, the observer applies a k-means clustering algo-

rithm49 to find a large cluster C of overlapping interaction

partners. The similarity between two interactions is calcu-

lated based on the number of overlapping interaction

partners. When the observer finds such a cluster, it infers

a generalized group behaviour from the clustered individ-

ual interactions by combining their features. The first fea-

ture is the set of overlapping interaction partners that are

constant for the learned action. Second, the observer needs

to know when and at which rate it should execute the

learned action.

The observer first finds the time range ½tmin, tmax� of the
executed action from all of the individual interactions in

C. Two cases might happen here: (1) an interaction only

occurs within a bound time range; (2) an interaction con-

tinuously occurs over time or the observer is uncertain

whether it has had enough time to determine an upper

bound tmax of the time range. In order to address the latter

case, the observer compares the two most recent time

stamps an interaction occurs in IHExec. If the difference

exceeds the observation time, the observer sets tmax to ∞.

Next, the observer extracts the rate of execution defined

as the number of executed interactions divided by the num-

ber of total computations of the interaction:

pexec = jIHExecj
jIHExecj+ jihnj , ihn∈ IHNExec and

ihn:t ∈ ½tmin, tmax� ð5Þ

where IHExec is the set of executed interactions, ihn is the

set of considered but not executed interactions whose time-

stamp is in ½tmin, tmax�, and j · j denotes the size of a set.

Obs0

Ag0

Ag1

...

Model Agents

Simulation

Ag2

Ag3

Ag4

Obs1

Figure 7. Observers Obs0 and Obs1 inside the simulation space monitor a subset of agents and log necessary information based on
their configuration.
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For example, all of the IHExec records in Tables 2 and 3

constitute a cluster in which ½tmin, tmax� is inferred from the

first column. The second column (ags) is discarded and

regarded as wildcard, the set of interaction partners is fixed

to A2, and pexec is calculated as described above.

Finally, the observer removes the action act from the

model agent. From now on, it performs the action on the

model agent’s behalf. For instance, an observer may learn

that action act of an agent A occurs at A:t∈ ½tmin, tmax�, and
executes it on A’s behalf with an according probability

pexec. Since the observer also learns the interaction part-

ners an action depends on, the computational resources to

identify those are saved as well.

4.3 Validation of the learned behaviours

After some time, a learned behaviour may no longer be

valid. In order to monitor the reliability of a learned beha-

viour, it is initialized with an unbiased confidence value

confinitial = 50%. At regular time intervals, the observer

lets some model agents execute their original interactions.

The confidence value is regulated based on the difference

between the actual behaviour of model agents compared

with the behaviour expected by the observer (Figure 8). In

our prototype, we only consider the difference in interac-

tion partners. The time at which an individual interaction

occurs or the rate at which model agents execute their

interactions could also be incorporated into the compari-

son. A confidence measure below a given threshold indi-

cates that a learned group behaviour is not valid any longer

and that the observer has to restore the model agents’ origi-

nal behaviours.

4.4 Experiments

The outlined self-organized optimization method can be

employed in arbitrary agent simulations. Biological simu-

lations are particularly suitable applications as biological

entities will be directly modelled as agents. When simulat-

ing biological systems at the level of inter-cellular and

inter-molecular interactions, actions are mostly triggered

by collisions or internal agent states. We applied our pro-

posed method to an agent-based simulation of blood coa-

gulation described in this section. All of the experiments

were repeated 10 times to ensure that a particular experi-

ment did not bias the results.

4.4.1 Model Setup. Blood coagulates at wound sites

because of the interplay of various bio-agents, e.g. plate-

lets, fibrinogens and serotonins. If a collagen protein col-

lides with a platelet, the platelet becomes activated. In

case an activated platelet collides with the wound site, it

secretes several chemicals which in turn activate more pla-

telets in the blood vessel. Gradually, a network of fibrins

together with a platelet plug form a clot around the wound

site (Figure 9). We modelled 12 blood factors as agents

whose behaviours are expressed as a set of interaction

rules. There are 10 different interactions which fall into

two categories: (1) state-dependent interactions and (2)

collision-dependent interactions. The actions themselves

introduce local state changes of the agents (represented as

internal variables), or they produce or remove agents in

the simulation. The simulation starts with 10 agents and

ends up with nearly 140 interacting agents (Figure 10).

4.4.2 Observer setup. Each interaction is monitored by an

observer that records only the interaction partners. Table 4

lists all the important parameters in our system. Once an

observer monitors an interaction long enough (twait), it

applies a k-means clustering algorithm to create k clusters.

The centroid of the largest cluster is considered to be the

learned group behaviour for which ½tmin, tmax� and pexec are

inferred. The observer subsumes the learned interaction by

executing it on behalf of the model agents. In predefined

intervals, Vinterval, the observer randomly chooses a subset

of the subsumed behaviours and allows the model agents

to execute their original interactions. The size of this sub-

set is determined by Vratio. After some time, Vlength, the

observer subsumes this subset again and validates its

abstractions based on the resulting interaction compared to

the expected result. The confidence of the learned pattern

is regulated accordingly. If the confidence of a pattern is

less than some threshold τconf , the learned pattern will be

removed from the simulation.

Table 3. Interaction history of computed but unexecuted
actions (IHNxec) inside an observer.

Time Action Count

t0 Activate n0
t3 Activate n3
..
. ..

. ..
.

t15 Activate n15
t23 Activate n23
t32 Activate n32

Table 2. Interaction history of executed actions (IHExec) inside
an observer.

Time Agent Action Interaction partners

t0 ag0 Activate A2

t1 ag0 Activate A2
..
. ..

. ..
. ..

.

t1 ag2 Activate A2

t2 ag7 Activate A2
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4.4.3 Results. The presented prototype implementation

successfully identified several group behaviours within the

simulation. For example, ‘‘Random walk’’ is a self-

triggering action found to be executed with probability

pexec = 100% and t ∈ ½0,∞Þ. ‘‘Adhere’’ is an interaction

executed in t ∈ ½172,∞Þ with probability pexec = 65%.

‘‘Self-activation’’ is another collision-based example with

pexec = 2:8% and t ∈ ½173, 190�.
Figure 11(a) shows the actual run-time of the simula-

tion at each time step. When there is no observer, the

simulation slows down as it proceeds, as simulating the

interactions among the increasing number of agents

requires more computations. When the observers are

present in the simulation logging interaction data

(0< t< 350), they add a little overhead to the run-time

of the whole simulation. At t= 350 when the learning

happens, there is a peak in the run-time. However, once

successfully deployed, the observers reduce the run-time

drastically by executing group behaviours instead of

individual behaviours. The validation cycle is triggered

every Vinterval = 70 time steps, therefore there is a fairly

high peak at this interval. It continues for Vlength = 10

time steps before the learned pattern is evaluated. After

this time, the simulation runs fast again until the next

validation cycle.

Figure 11(b) depicts the cumulative run-time of the

simulation comparing a normal run against a run with

observers . The overhead of having observers clearly pays

off at t> 390, when the cumulative run-time of a normal

run exceeds that of a run with observers . On average, a

normal run takes 107 seconds to complete 1000 simulation

time steps, almost twice as long as the run with the observ-

ers, which takes 56 seconds.

Figure 12 shows the change of confidence for one of

the learned patterns. Since there is no learned pattern

before t = 350, the confidence value is also 0. However,

after the observer abstracts an individual behaviour, the

confidence value is initially set to 0:5. As all the abstrac-

tions work correctly, the confidence values continuously

increase over time.

Time to start 
validation?

End iteration t

Start iteration t

AGExec = AG - AGVal

AG: Set of the observed agents

AGVal: Subset of the observed 

agents used to validate the 
group behaviour

AGExec: Subset of the observed 

agents for which the group 
behaviour is executed

Randomly create AGVal
from AG

Put back individual 
behaviours in AGVal

Execute group 
behaviours for AGExec

Validate the group 
behaviour using AGVal

AGVal == ?

AGVal = 

No

Yes

Yes

No

Figure 8. Flow chart of the validation step. At some interval, the observer selects a random subset of the observed agents and
restores their individual behaviours. The result of their interactions is evaluated in the next iteration to regulate the confidence
value. The observer continues to execute the group behaviour for all other agents.
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5. Conclusion and future work

We introduced a concept for the reduction of computa-

tional complexity in agent-based models by means of

learning behavioural patterns over the course of a simula-

tion. The abstractions would be expressed as meta-agents

that subsume lower-level agents and be seamlessly inte-

grated into the agent models.

We presented and evaluated three implementations. (1)

The first utilized ANNs to learn collective processes in the

flux of concentrations of the MAPK signalling pathway.

Here, the learned abstractions were constantly updated to

consider a growing number of agents. As a result, the

abstractions lost their validity at some point, they were

removed from the simulation and relearned. (2) In the second

implementation, which relied on GP for learning collective

behaviours, the abstractions were not completely revoked

when becoming invalid, but they were restored to their previ-

ous states. (3) In the third implementation, observer agents

detected group behaviours and managed the resulting

abstractions. We demonstrated the effectiveness of this

implementation in the context of a blood coagulation model.

We proposed two algorithms to monitor the validity of

abstractions by comparing the expected group interactions to

the interactions of the actual individuals at regular intervals.

Figure 9. The blood coagulation simulation at different time steps (t1 < t2 < t3). The process is observed from two different
perspectives: inside and outside of the vessel.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  100  200  300  400  500  600  700  800  900  1000

N
um

be
r 

of
 A

ge
nt

s

Simulation Time Step

Figure 10. Blood coagulation simulation: number of agents
over time.

Table 4. System parameters.

Parameter name Symbol Value

Delay before learning twait 350
Validation interval Vinterval 70
Validation length Vlength 10
Validation ratio Vratio 30%
Confidence threshold tconf 0.3
Number of clusters in k-means k 10
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In order to further our approach, we suggest the auto-

matic proliferation of a diverse set of observer agents

based on their workload. An evolution of agents that are

primed to identify frequently occurring patterns could be

implemented, yielding a self-organized learning system

that adapts to specific model domains and even to niches

inside of simulation spaces.

The relation between group behaviours and emergent

phenomena is another promising area to be investigated in

the given context. The possibility to incorporate predefined

high-level patterns should be considered. If patterns are

described at different scales, multi-scale modelling can be

restated as finding transitions from low-level to higher-

level patterns.
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