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Abstract

Material and virtual entities alike undergo developmental pro-
cesses. If they replicate, they evolve and adapt to a variety
of developmental processes. Based on the notion that these
processes rarely constitute a direct translation from one state
to the next, we have taken a step towards formally capturing
evolutionary development of time series. We iteratively ex-
tend the Knapsack Problem to consider time, personal pref-
erences, contradicting goals, external events, and changing
environments and we show how the evolution of time series
can be driven to address these various challenges. The pre-
sented work constitutes a small step towards a more rigorous
approach hinted at towards the end of the paper.

Introduction
When facing evolutionary challenges, organisms need to
adapt—behaviourally within a lifetime, see for instance Noë
and Laporte (2014), or genetically over the course of gen-
erations, as comprehensively investigated in the context of
the evolution of the eye (Lamb (2011)). We consider adap-
tation in terms of properties of the organism, in terms of
its anatomy or physiology. Yet, properties, just like envi-
ronmental challenges, emerge one after the other and evolve
over time (Gilbert and Burian (2003)). Accordingly, there
is no fixed phenotype of an organism but a series of phe-
notypical states over time. This notion is supported by the
non-linear order of expression of genotypical information
(Dang (2014)). In order to take a step towards this notion
of organismal development, we have subjected a time series
representation to evolutionary processes. Hereby, the transi-
tion to the next point in time of the organism’s state depends
on the previous one. At the same time, we assign such time-
based individuals fitness values integrated over time, also
considering changing environmental conditions.

In the remainder of this paper, we briefly touch upon pre-
ceding approaches of evolutionary development, first. Next,
we present our concept of time series evolution (TSE) in the
context of the knapsack problem. We extend the problem
to dynamic processes in terms of filling the backpack and
in terms of multivariate external challenges. Step by step,
we expand the representation of an individual and its fitness

evaluation to arrive at a generic approach to time series evo-
lution in dynamic environments. Experiments are presented
to back up and to illustrate our rationale. We conclude our
presentation with a summary and an outlook at ongoing and
potential future work.

Related Work

There have been numerous computational approaches to
condense the principles of growth and evolution. Stan-
ley (2014) provide a valuable overview to this field. Ab-
stract data structures have been automatically, interactively,
immersively bred to take on a multiplicity of challenges
(Sayama (2014),Von Mammen and Jacob (2009)). For in-
stance, the morphology of soft robots and their behaviour
have been subjected to evolutionary algorithms (e.g. Rieffel
et al. (2014)), establishing accurate models of plant growth
(e.g. Henke et al. (2014)), and the design of computational
hardware has been supported by evolutionary approaches
(e.g. Bhattacharjee et al. (2015)). Typically, such computa-
tional evolutionary developmental (or EvoDevo) approaches
focus on a desirable end product. Yet, the product itself will
be embedded in a context, it will be used, be worn, and van-
ish at some point in time. Similarly, its production does not
entail a direct mapping from a concept to an artefact. In-
stead, it grows one step after the next—its existence changes
over its lifetime (Gilbert and Burian (2003)). Hence, devel-
opment is a proactive state of being rather than a phase with
a well-defined beginning and end. Therefore, the field of
adaptive computing approaches, including autonomic com-
puting, which is tailored towards the continuous adaptation
of computing systems (Wódczak (2014)) represents an im-
portant reference to the work presented in this paper. Even
more so, do organic computing (Bernard et al. (2014)) and
morphogenetic engineering (Kowaliw et al. (2014)) which
target rather generic adaptive systems. However, the focus
of this work still varies—it investigates the interplay of time
series as generic developmental representations and genetic
algorithms to allow their generational adaptation.



The 0-1-Knapsack Problem and TSE
The concept of time series evolution is motivated by the
modelling challenges of developmental processes (Gilbert
and Burian (2003)). Therefore, we identified the Knapsack
Problem (KP) to be a theoretical problem which (a) consid-
ers development, which can (b) be expanded towards multi-
objectivity, and (c) allows the introduction of the aspect of
time.

The 0-1-Knapsack Problem can be defined as follows
(Plateau and Nagih (2010)). n items of weights w1, ..., wn

and of values v1, ..., vn are given, alongside a backpack with
a weight limit of L. Valid solutions to solving this problem
are vectors a1, ..., an, with ai ∈ {0, 1} denoting whether or
not the corresponding item is put inside the backpack and
the constraint that the summed weight of all items does not
exceed the limit, i.e.

∑n
i=1 aiwi ≤ L. The best solution

to the problem is the combination of items with the greatest
overall value.

From 0-1-KP to Development
Now consider a burglar carrying the backpack during his
raid. Thereby, the Knapsack Problem is modified from a
static combinatorial planning challenge to a development
process. It maintains the original goal of maximising the
backpack’s contained value but it allows for consideration of
additional constraints. These can, for instance, be the bur-
glar’s varying physical condition, lock-picking challenges
and other external factors.

We define an according developmental series as a vec-
tor d⃗ = (y1, ..., yn)

T which describes a number of deci-
sions (encoded as numeric values) taken at the correspond-
ing points in time t ∈ {1, ..., n}. Such developmental se-
ries represent solutions, or individuals in the context of evo-
lutionary optimisation, given their sequences are valid. A
function g(t) may serve as generator of the developmental
series, and for integrating the solution’s state at an arbitrary
point in time.

Heuristic 0-1-KP Solving
Before adding any further constraints, we briefly show ex-
emplary how a developmental series can approximate the
optimal solution to the 0-1-Knapsack Problem. In particu-
lar, we consider the collectible items’ value/mass-ratios and
decide which one to pick up and which one to leave behind.
In order to calculate a series’ integrated value at a specific
point in time, g(t) would therefore be defined as follows
(Eqn. 1). Figure 1 shows an evolved solution for a limit
L = 57 for picking up a subset of 20 items that occur in de-
scending order of their value/weight-ratios. Table 1 shows
the given items.

g(t) =

{
g(t− 1) + vt

wt
, ifat = 1

g(t− 1) , ifat = 0
(1)
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Figure 1: Uptake of items ordered according to their
value/mass-ratios.

i v w v/w i v w v/w
1 8 5 1,6 11 10 12 0,83
2 5 4 1,25 12 9 12 0,75
3 12 10 1,2 13 5 7 0,714
4 17 15 1,13 14 21 30 0,7
5 15 14 1,071 15 2 3 0,667
6 3 3 1,0 16 5 8 0,625
7 6 6 1,0 17 6 10 0,6
8 10 10 1,0 18 4 8 0,5
9 11 12 0,917 19 2 5 0,4
10 6 7 0,857 20 2 9 0,22

Table 1: Exemplary set of items for the 0-1-Knapsack Prob-
lem with indices i, values v and weights w.

Introducing Evolution

The generational evolution of developmental series can be
realised by a Genetic Algorithm (Holland and Reitman
(1977)). We need to assume that certain successions of
states describe more successful developmental processes
than others. Therefore, without loss of generality, we pro-
vide fitness values for each state of a developmental pro-
cess, which results in a fitness series f⃗ = (z1, ..., zn)

T that
defines the optimum. We rely on the mean quadratic error
1
n

∑
n
i=1(yi − zi)

2 to derive a single fitness value for each
developmental series. With an according set of genetic oper-
ators, the binary representation of the developmental series
can be extended to arbitrary numeric values.

For the experiments presented throughout this paper, we
deployed mutations with a chance of 10%. 30% of new off-
spring emerged from recombination of preceding specimen.
We relied on fitness proportionate selection and 1−elitism to
keep the single best solution in the pool. Our tests regarding
the population size included 20, 25, 40, and 50 individuals.
Eventually, we stuck with 32, as it provided the best results.
We let our experiments run for 40 generations, whereas the
outcome typically converged after 10 generations.



Multi-objectivity
To give credit to the fact that a single optimisation criterion
rarely captures the many facets of developmental processes,
we extend an individual to a set of developmental series. Re-
lating to the example above, the burglar might, for example,
want to gather great value and achieve financial security fast.
He might also want to maintain low weight of the backpack,
especially for the first hours of the raid. In summary, we
consider a population of individuals which consist of sets of
developmental series DS. The elements d⃗i ∈ DS describe
the development of some attribute i over n points in time. A
function gi(t) can generate the respective values. As a result
of the multi-series extension, the overall fitness of an indi-
vidual can be calculated as the total of fitness values of all its
development series over a given period of time. In analogy
to gi(t), the fitness target values can be provided by func-
tions fi(t). This generic representation not only allows for
arbitrary fitness evolutions but may also serve for balancing
the relative weights of the considered attributes.

Synthesis of Fitness Series
As can be expected, we observed that optimisation to-
wards individual criteria, such as stalling weight growth
for as long as possible, converges well. Loading up items
from Table 1 with indices greater than 13, would, for
instance, result in a mass development series d⃗mass =
(0, ..., 30, 33, 33, 43, 43, 48, 57)T . Given the function in
Equation 2, which rewards a late mass increase, yields a rel-
atively high fitness value of 222, 75.

fmass(t) = 0, 012 · t2 · |d⃗mass(t)− d⃗mass(t− 1)| (2)

Adding the early financial security criterion fvalue (Eqn.
3 and 4), which qualitatively inverts function fmass’ reward
policy, would effectively work against this development. As
a consequence, the given individual would perform very
poorly in terms of the total value of 2, 1 of considered fit-
nesses. Accordingly, the influence of several fitness series
needs to be automatically balanced to reach a global opti-
mum.

∆d⃗value = |d⃗value(t)− d⃗value(t− 1)| (3)

fvalue(t) =

{
(4− 0.07 · (t− 1)2) ·∆d⃗value, if t < 9

(0.05 ·∆d⃗value, if t < 9

(4)

Multiple Criteria & Diversity
In the following, we present results from applying multiple
fitness criteria, including a fast increase in value (Eqn. 4),
the maximisation of the value/weight ratio, and the slow ac-
cumulation of weight (Eqn. 2). We further considered the
total weight and total value, and some inherited knowledge

fexperience that works as a generational memory for good
decisions but is independent of any items’ properties.

An individual optimised to address the 0-1-KP in ac-
cordance with Bellman’s optimality equation (Montrucchio
(1986)) would simply pick up the first seven items in Table 1.
Yet, considering the given number of fitness series, such an
optimised specimen would only achieve a final value of 66
and receive an overall fitness of 339, 51 (v/m = 82, 55, v =
212, 41,m = 16, 55, experience = 14, 0, other = 14, 0).
Instead, the best GA-bred individual to address all the given
factors achieved an overall fitness value of 380, 95. Figure 2
shows its genotype and the relative fitnesses.
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Figure 2: Top: The genotype of the best evolved specimen.
Bottom: Its relative phenotypic fitness values.

We also found multiple specimen that achieved similarly
high overall fitness ratings of about 300, relying on funda-
mentally different pick-up strategies. Figure 3 shows two
rather diverse examples. Individual A achieves high over-
all fitness picking up items early on, whereas individual B
focusses on the relative maximisation of value.
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Figure 3: In this diagram, two individuals A and B are com-
pared in terms of their relative fitness scores. Both individu-
als have achieved rather high overall scores of about 300.



Dynamic Environments
So far, our model considers several developmental time se-
ries but only one set of ordered items. Although helpful for
model development itself, the latter restriction is not ade-
quate when considering complex developmental processes.
Metaphorically speaking, the burglar may not be able to
choose his raiding route upfront, not know what items to
expect along the way in detail, nor would it be possible to
plan in unforeseeable events, e.g. the appearance of a police
patrol.

Based on these deliberations, one goal could be to find
strategies that optimally fit a broad range of item spaces
(and orderings). Successful, fixed genotypes might reveal
significant overlaps, in terms of picking up specific items,
item properties or qualitative pick up sequences, that indi-
cate preferable behaviours. When changing the order of the
items, we discovered that the three items—originally indices
11, 13, and 19 from Table 1—were picked by the winners of
two consecutively performed breeding experiments.

Dynamic Internal States
Another important modelling aspect is the condition of the
burglar, or its internal state. Burglary, like everything else,
requires energy. Therefore, without loss of generality, we
assumed three breaks for snacks throughout the raid, with
an overall decrease of recovery, see the blue columns in Fig-
ure 4. Their energetic maxima (at times t = 2, 9, 17) co-
incide with a tendency to pick up items. The minima (at
times t = 7, 14, 15, 20), on the other hand, indicate exhaus-
tion which nullifies the ability to pick up items. Energy is
generally a rewarding dimension when considering process
optimisation. For instance, it could be used to handle the
aforementioned encounter with a police patrol—decreasing
the specimen’s supply at the time of the event (indicated by
the red columns in Figure 4). Such strong constraints, of
course, need to be considered during the evolutionary runs
in order to provide valid solutions. The representation of ex-
ternal factors would encompass one n-dimensional vector a⃗
that quantifies the impact, a reference to the targeted devel-
opmental series t⃗s, and a set of constraints C that describe
the relative impact of a⃗ on t⃗s

Dynamic System2

Combining the concepts of dynamic system states and dy-
namically changing environments, we extend our model to
consider DS2, dynamic systems with a dynamical structure
(Michel et al. (2009)): Breaks cannot be accurately antici-
pated during a raid, police officers do not patrol neighbour-
hoods at regular times. Accordingly, in an experimental run
comprising 25 generations, we offset the occurrence of po-
lice by 0 to 3 units and the occasion for breaks by 1 to 2 units
at each other generation. The results can be seen in Table 2.
As expected, the population adapts to the interval shifts. We
recognise a corresponding cyclic pattern.
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Figure 4: We define the internal state of the developing or-
ganism to depend on external events. In our example, a bur-
glar replenishes his energy level three times throughout the
raid (in blue). Encounters with a police patrol may cost en-
ergy (in red).

gen. f v m fmax-genotype e/p
0-2 316 52 56 11101000000000001110 -
3-4 279 53 57 01110100010000001100 1/1
5-6 288 51 56 00111100000000000011 1/1
7-8 290 53 55 11101010000010000001 2/2
9-10 230 59 57 01101111010000100000 2/3
11-12 211 54 57 00101100110000110000 1/1
13-14 213 45 57 00001100001100100110 2/2
15-16 212 39 57 00000110001110100011 1/0
17-18 233 48 56 11000000110010111000 2/1
19-20 260 46 57 11000000011000111100 1/1
21-22 252 43 55 01100000000100111100 1/1
23-24 289 36 57 00100000000010011111 1/1
25-26 268 37 56 00001100000010001111 1/2

Table 2: Every other generation (gen.), a timing offset
was introduced regarding energy intake (e) and policing (p)
events. The best fitness values fmax indicate the adaptation
of the population, the shifting pattern in item uptakes reflects
the change of external events.

Summary & Future Work
In this paper, we have presented the concept of evolving
time series in the context of developmental processes. Step
by step, we extended the Knapsack Problem, turning it into
a metaphorically understood burglar raid to suit the chal-
lenges faced in actual developmental processes. We started
by merely evolving developmental series—in the given ex-
ample a decision strategy for stealing specific items at par-
ticular points in time. Predetermined ideal progression was
provided by fitness series, evolution of the developmental
series ensured their approximation.

Next, partially contradicting desires by the decision
maker were put to the test, necessitating prioritisation. Fi-
nally, we started considering the internal (physical) state
of the burglar, introducing the notion of a generic time-
dependent fitness criterion (energy) that is tightly interwo-
ven with the environment. Our last experiments showed how
time series evolution successfully adapts to dynamic envi-
ronmental challenges.



Although it is already partially incorporated in the pre-
sented model, a major challenge is the accessible descrip-
tion and efficiently resolvable computation of constraints (a)
among different developmental series and (b) across time
steps. Depending on the resulting overhead, we hope to
deploy our approach to biological developmental modelling
and prediction. Currently, we are working on the architec-
tural deployment of time series evolution as we can easily
choose a manageable level of abstraction and since we ex-
pect actually applicable results.

References
Bernard, Y., Klejnowski, L., Bluhm, D., Hähner, J., and Müller-

Schloer, C. (2014). Self-organisation and evolution for trust-
adaptive grid computing agents. In Evolution, Complexity
and Artificial Life, pages 209–224. Springer.

Bhattacharjee, D., Banerjee, A., and Chattopadhyay, A. (2015).
Evodeb: Debugging evolving hardware designs. In VLSI
Design (VLSID), 2015 28th International Conference on,
pages 481–486. IEEE.

Dang, C. V. (2014). Gene regulation: Fine-tuned amplification in
cells. Nature, 511(7510):417–418.

Gilbert, S. F. and Burian, R. M. (2003). Development, evolu-
tion, and evolutionary developmental biology. Keywords and
concepts in evolutionary developmental biology, pages 61–8.

Henke, M., Huckemann, S., Kurth, W., and Sloboda, B. (2014).
Reconstructing leaf growth based on non-destructive digitiz-
ing and low-parametric shape evolution for plant modelling
over a growth cycle. SILVA FENNICA, 48(2).

Holland, J. H. and Reitman, J. S. (1977). Cognitive systems based
on adaptive algorithms. ACM SIGART Bulletin, (63):49–49.

Kowaliw, T., Bredeche, N., Chevallier, S., and Doursat, R. (2014).
Artificial neurogenesis: An introduction and selective review.
In Growing Adaptive Machines, pages 1–60. Springer.

Lamb, T. D. (2011). Evolution of the eye. Scientific American,
305(1):64–69.

Michel, O., Spicher, A., and Giavitto, J.-L. (2009). Rule-based
programming for integrative biological modeling. Natural
Computing, 8(4):865–889.

Montrucchio, L. (1986). Optimal decisions over time and
strange attractors: An analysis by the bellman principle.
Mathematical Modelling, 7(2):341–352.
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