
Distributed Resource Allocation
as Co-Evolution Problem

Sven Tomforde, David Meier, Anthony Stein, and Sebastian von Mammen
Organic Computing Group, Universität Augsburg

Eichleitnerstr. 30, 86159 Augsburg, Germany
[sven.tomforde | david.meier | anthony.stein | sebastian.von.mammen]@informatik.uni-augsburg.de

Abstract—Distributed self-organising systems often face con-
flicts if more than one entity tries to access a limited resource.
In order to solve this conflict, research focuses on techniques
for resource allocation considering different priorities. In this
paper, we propose to tackle the decision problem of whom to
assign the resource by means of a co-evolutionary approach.
We investigate appropriate fitness estimations, representation
schemes, and configuration of the underlying genetic operators.
We demonstrate the convergence and efficiency of our approach
using an exemplary system model.

I. INTRODUCTION

It is a common problem in distributed, self-organising
systems that a certain resource might be required by several
entities at the same time. This problem becomes all the more
challenging with an increasing degree of self-organisation, i.e.
in systems with a maximally distributed control mechanism
[1]). In order to address this problem, decisions are typically
made to give priority to individual entities based on (1) distinct
features such as unique identifiers, (2) random decisions, or
(3) scheduling principles such as First-Come-First-Serve, cf.
e.g. [2]. Tournaments pose an alternative for such a decision
mechanism. Here, two or more entities compete in certain
tasks and the winner receives the right to access the resource.
In this paper, we develop and investigate a co-evolutionary
approach to such tournament-based conflict resolution scheme
for resource allocation in self-organising systems.

Smart camera networks [4] represent a common research
domain considered by the field of Organic Computing [3],
where the outlined resource conflict in distributed, self-
organising systems arises. A smart camera (SC) is a limited
resource in terms of tasks to be accomplished: At any given
point in time, it might either (i) observe certain areas to
detect intruders, (ii) track a certain person’s movements, or
(iii) participate in a 3D-reconstruction of an object with other
SCs. All of these tasks compete for the same SC, whereas a
conflict resolution policy is usually not in place (be it assigned
priorities, computable criteria or simple decision logic).

We propose to model the decision problem as a game played
by two opponents competing for the same resource. Their odds
are identical to begin with, but one of the opponents’ strategies
will come out on top. In order to find optimal strategies, we
rely on co-evolution.

The remainder of this paper is organised as follows: Sec-
tion II gives a brief overview of the state-of-the-art. Section III

introduces our model and the design of the underlying co-
evolution scheme. We present an evaluation of our approach
in Section IV. This includes an analysis of the most successful
strategies. Finally, Section V summarises the paper and gives
an outlook to future work.

II. RELATED WORK

A. Co-Evolution

Co-evolution is a concept known from biology where “the
change of a biological object is triggered by the change of a
related object” [5]. Conceptually, this means that successful
modifications in the genome of a certain species affect the
evolution of the genome of another species and vice versa.
This observation from nature has been transferred to technical
systems, initially to explain the development in software and
hardware [6]. For instance, changes in hardware have been
shown to bring about novel developments and functionalities
in software applications, and novel possibilities in software
allow for more flexible hardware architectures. A similar
interpretation has been discussed in the context of socio-
technical systems, where a “joint optimisation” between sys-
tems analysis and system design has been considered [7].

From an algorithmic point of view, co-evolution can be
considered an aspect of optimisation strategies, and a field
within the wider area of evolutionary computation. In general,
two concepts are distinguished: cooperative and competitive
co-evolution. Cooperative co-evolution tackles an optimisation
problem (typically a large and complex problem) by dividing
it into “subcomponents” (also called “species”) to be solved
individually [8]. Thereby, each of these subcomponents is
mapped on an individual population. The evaluation is done
cooperatively for each individual of the populations. The
concept imitates the observation from nature that individuals
of a particular group of species mate [9].

In contrast, competitive co-evolution tries to imitate an
“arms race”. Here, the individuals’ fitnesses are determined
in tournaments rather than by means of an absolute fitness
measure. As a result, an increased fitness value of one can-
didate solution implies a decreased fitness value of another.
In a perfect setting, this results in an urge to continuously
find better solutions than the opponent [10], [11]. Competitive
co-evolution has been successfully applied to learning [12],
sorting networks [13], or finding vulnerabilities in an organ-

isation [14]. In this paper, we focus on such a competitive
co-evolution process.

B. Resource Allocation

Traditional approaches to the research allocation problem
come from the scheduling domain, see e.g. [15]. For solving
the problem, they consider either the arrival time (such as first-
in or last-in is served), static priorities, or dynamic priorities
(e.g. in terms of deadlines).

Besides such pre-defined decision schemes, resource allo-
cation is often subject to optimisation, which can be broadly
seen as a combinatorial problem. Accordingly, the idea is to
identify an operation schedule that is consistent with resource
constraints and to find the best possible trade-off given a cer-
tain utility function. In literature, several according concepts
can be found, going back to the 1960s, see e.g. [16]. Several
approaches have been discussed that aim at finding optimal
solutions. Examples are dynamic programming or branch-and-
bound concepts [17]. Due to complexity and scalability issues
they are rarely applied to real-world problems [18].

As an alternative to optimal solutions, good solutions are
often acceptable, which allows the use of heuristics to arrive
at satisfactory solutions without exhaustively sampling the
search space. Heuristic rules are easy to understand, to design,
and computationally efficient to apply [19]. In the context of
project management, heuristic rules were designed to achieve
general goals such as “least total slack” or “earliest late start”
[20]. But the rules would not adapt to specifics of the particular
problem instance and hence result in sub-optimal behaviour.

Optimisation heuristics, however, are able to identify sat-
isfactory problem-specific solutions. There is a variety of
optimisation heuristics that can be applied to the resource
allocation problem, ranging from standard hill climbing to evo-
lutionary techniques and swarm-based methods, cf. e.g. [21].
All these concepts typically rely on a centralised algorithmic
component and are therefore not efficiently applicable to the
distributed allocation problem we are facing in the context of
self-organisation and Organic Computing.

III. APPROACH

A. System Model

We model the decision process for the resource allocation
problem by means of a simple game. In this game, two
opponents play an odd number of rounds – the player with
more successful rounds wins the game. Initially, each player is
given a stick of a certain length, whereas the length represents
the player’s amount of resources. In each round, both players
have to cut off a piece of their resource, without knowing
which length the opponent is ready to sacrifice. The player
who cut off the greater piece wins the round (Figure 1).

Obviously, the setup of the game does not favour one
opponent over the other. It is also not influenced by the choice
of who begins. There are only two possibilities for a draw: (a)
Both players act constantly identically, and (b) both players
won the same number of rounds and have the same fraction
of the resource left for the last round. The probability for these

Fig. 1. The figure illustrates the setup of the game: Two players decide about
their resource utilisation (green part). Since the right player cuts off the larger
part, it wins this round.

cases can be influenced by the initial length of the stick and
the minimal cut size (which, in turn, impacts the period of
time a game can take).

We further discern that the resource-stick game has some
advantages over other decision policies: (1) It does not favour
one opponent, (2) it is fast to execute, (3) each opponent can
optimise his strategy by playing against himself, and (4) it
comes to a decision with a very high probability.

B. Approach based on Co-Evolution

We solve the resource-stick game by means of co-evolution.
To this end, we consider two players, A and B, that both
have a set (population) of strategies (individuals or candidate
solutions) available. θ denotes the number of individuals of
each population. Both players repeatedly compete with each
other playing the resource-stick game. The players’ strategies
co-evolve stepping through the following algorithm.

1) Step 1: Populations A and B are initialised with θ
randomly generated candidate solutions.

2) Step 2: Player B randomly selects one of his strategies,
his currently best candidate.

3) Step 3: Player A lets all his strategies compete against
B’s currently best candidate. The individual from A
with the greatest fitness (measured by a function φ,
considering e.g. the amount of resources left), becomes
A’s currently best candidate.

4) Step 4: Player B lets all his strategies compete against
A’s currently best candidate. The individual from B with
the greatest fitness, e.g. the amount of resources left,
becomes B’s currently best candidate.

5) Step 5: The worst ε individuals from both populations
are deleted.

6) Step 6: To each population, ε new individuals are added,
generated using genetic operations.

7) Step 7: Steps 3 to 6 are repeated until a pre-defined
stopping criterion is fulfilled.

The basic algorithm contains decisions about the represen-
tation scheme of the individuals, the fitness function, and the
genetic operations. We introduce the corresponding definitions
next.

C. Representation Scheme

The representation scheme describes the genomic encoding
of each individual. Technically, the genome can be understood
as a vector of attributes defining the behaviour of an individual.
In particular, a vector may comprise an entry for each round of
the resource-stick game – encoding the fraction of the resource
to be cut off the stick. As the representation scheme has great
impact on the performance of the optimisation process, we
consider two different ones (evaluation in Section IV).

1) Representation A (Integer):: The first representation
scheme makes use of integer values, with each value coding
an absolute percentage of the initial resource size to be spent
in the particular round. Consider the following array of values
as an example:

10 20 25 66 42 88 2

In this example, 10% of the initial resource is spent in the
first round, 20% in the second round, and so on. As already
incorporated in this example, the concept is prone to early
resource loss (in case of sub-optimal decisions).

2) Representation B (Relative Coding):: As alternative to
the absolute coding of resource utilisation, a relative scheme
can be applied. Here, each entry in the vector defines which
fraction (given in percent) of the available resource is utilised
in the particular round. This decreases the possibility of
spending the full resource, but has the drawback that it seldom
makes use of the complete resource (i.e. a small fraction is
left over, if the last entry does not equal 100%). Considering
the strategy presented above, the genes would encode: Spend
10% of the resource for round 1, 18% for round 2 (i.e. 20%
of remaining 90%), and so on.

D. Selection Strategy

The selection strategy decides which individuals are pro-
moted to the next generation. In literature, a variety of ap-
proaches exist (see e.g. [22]). We decided to rely on an Elitist
approach – meaning that a subset of the best individuals are
promoted to the next generation in an unchanged manner. In
other words, we explicitly collect and keep the best solutions
over the course of all generations, which proves especially
effective for evolving solutions to problems with static fitness
functions.

However, we compare two different selection strategies,
one of which considers the diversity of the chosen specimen:
(1) A “standard” elitist selection algorithm choses the best
srate (1 − ε) individuals (see Algorithm 1). (2) A modified
variant that chooses the best srate distinct individuals (see
Algorithm 1). In both algorithms, the population size is given
by the parameter psize, while srate controls the fraction of
elitists that are promoted to the next generation.

E. Genetic Operators

Besides choosing individuals for the next population, we
need to generate new individuals for each generation to fill
the population after deletion of the ε worst candidates. This

Algorithm 1 Selection Algorithm
1: procedure SELECT(PA)
2: sort population PA by decreasing fitness
3: PA ← choose the first bpsize ∗ sratec elements from
PA

4: return PA

5: end procedure

Algorithm 2 Alternative selection algorithm
1: procedure SUPERSELECT(PA)
2: sort population PA by decreasing fitness
3: PA ← choose the first bpsize ∗ sratec elements from
PA that are distinct from those that are already chosen

4: return PA

5: end procedure

is done using the genetic operators: selection, mutation, and
crossover. We explain the configuration and interplay of these
operators in the following paragraphs.

1) Parent Selection: When generating new individuals, we
first have to select parent individuals for procreation. Again,
a variety of approaches to this selection procedure are known
from literature. We decided to use a roulette-wheel approach
that considers each remaining individual in relation to its
fitness, since this seems to be the most commonly accepted
variant [22].

2) Crossover: The selected parents provide the genetic
basis for the offspring. Individual genes from either parent
are combined to form a new individual by means of the so-
called crossover, or recombination, operator, which imitates
natural sexual reproduction. Implementations range from one-
point crossover to multi-point crossover. The former splits
and recombines the genetic encoding at one randomly chosen
point, the latter recombines several segments whose positions
and lengths often follow a uniform probability distribution. For
our experiments, we implemented one-point, two-point and
uniform crossover operators [23].

3) Mutation: The mutation operator introduces small mod-
ifications into the offspring’s genome. As such, it adds an
exploration component to the search for the best candidate
solution [23]. In Equation 1, we define the mutation function
M(x). Within this equation, x ∈ [xmin, xmax] is the initial
manifestation of a gene and M(x) is the corresponding value
after mutation has been applied. The range of x is delimited by
upper (xmax) and lower (xmin) boundaries – which reduces
the decision space. Mmax defines a maximally allowed devi-
ation of the mutated allele in comparison to the initial allele.
Mfactor describes the fraction of the mutated parts in the final
allele. The random variable rpos ∈ [0, 1] determines, whether a
mutation is applied or not. The specific deviation of the allele
is estimated using the random variable rint ∈ [0,Mmax]. This
random variable is uniformly distributed, resulting in lower
probabilities for extrema but higher probabilities for average
values.

M(x) =

xmax if xrint ≥ xmax ∧ rpos ≤Mfactor

xmin if xrint ≤ xmin ∧ rpos ≤Mfactor

xrint if xrint ∈ [xmin, xmax] ∧ rpos ≤Mfactor

x otherwise.
(1)

F. Fitness Estimation

The fitness function allows us to quantify the performance
of an individual/solution. Following the system model as
introduced in Section III-A, the overall objective is to win
the game. This basic criterion can be augmented considering
the following two approaches.

1) High Resource Utilisation: The first approach combines
the concept of winning a round with a desired degree of
resource utilisation, i.e. the sub-goal is to maximally deplete
a given resource (Eqn. 2).

F (rwin, srem) =

1 + λ rwin

rall
+ (1− λ)

(
1− srem

sinit

)
if win,

λ rwin

rall
+ (1− λ)

(
1− srem

sinit

)
other.

(2)
In this formula, λ ∈ [0, 1] is the weighting factor favouring

the number of successful rounds over resource utilisation
(the rounds weight factor). Mathematically, the goal is to
decrease the remaining resource to zero. rall represents the
number of rounds played and rwin the number of rounds
won. The variable srem denotes the remaining resource after
the last round and sinit defines the initial resource length.
Consequently, the term 1− srem

sinit
increases with the utilisation

of resources and is, thus, used to determine the resulting fitness
value.

2) Low Resource Utilisation: The goal of the second ap-
proach to fitness calculation is contrary to the previous one.
While trying to win as many rounds as possible, the player
avoids too high resource utilisation (Eqn. 3). The variables are
named in accordance with Eqn. 2.

G(rwin, srem) =

{
1 + λ rwin

rall
+ (1− λ) sremsinit

if win,
λ rwin

rall
+ (1− λ) sremsinit

other.
(3)

3) Application of Fitness: For both augmented fitness func-
tions, F,G ∈ [0, 2]∀rwin, srem holds. In order to calculate the
overall fitness of a player, we multiply the fitness values of
the played games as shown in Equation 4.

fj =
γfj−1 +H(rwinj

, sremj
)

γ + 1
(4)

The fitness in game j is recursively defined. The initial value
is set to f0 = 0.5. H denotes the method for calculating the
fitness, and rwini

represents the number of rounds won in
game i. Analogously, sremi

is the remaining resource in game
i. γ is the fitness appliance factor, which controls how the
fitness of the current game is weighted in relation to the the
current fitness of the player.

IV. EVALUATION

In this section, we evaluate our concept and investigate
the most appropriate configurations for the introduced control
variables.

A. Experimental Setup

All simulations are performed 20 times, the figures show
averaged values and standard deviation. Table I lists the
considered standard parameter settings. Some of these settings
are altered throughout the experiments, which we will explic-
itly state whenever applicable. In addition to the parameters
introduced in Section III, the parameters of a single game
have to be specified. This includes (1) the number of rounds
the game is played (one player needs more than half of these
rounds to win the overall game), (2) a fraction, the so-called
Minimum Decision, of the resource that has to be utilised at
each round (this refers either to a percentile or an absolute
value depending on the method from Section III-C), and (3)
an upper boundary of resources, or Maximum Decision, lost
at each round.

TABLE I
STANDARD CONFIGURATION OF PARAMETER SETTINGS THROUGHOUT

ALL EXPERIMENTS, IF NOT INDICATED OTHERWISE.

Variable Configuration
Population size 20
Number of rounds 7
Resource length at start 1000
Generations 10000
Evolution type Co-Evolution
Representation Scheme Relative Coding
Minimum Decisions 1
Maximum Decisions 100
Selection rate 80 %
Selection method Superselect
Crossover method Probability Crossover
Crossover probability 60 %
Maximum Mutation 100 %
Mutation probability 5 %
Fitness calculation High resource utilisation
Weight per round 0,9
Fitness factor 10

B. Experimental 1: Static Opponent

First, we demonstrate that the optimisation process works
correctly. To this end, we modify the prescribed play by
Player B as outlined in Section III-B. Instead of a responsive,
adaptive behaviour, we now use a static strategy, i.e. player B
always cuts off the same fraction of the resource at each round.
In contrast, Player A optimises his population of solutions
following the previously outlined evolutionary optimisation
loop. Figure 2 illustrates the results. The figure emphasises
the clear loss of the static player, losing about 92% of the
rounds.

A slightly more challenging opponent changes his behaviour
after losing a round. We implemented such a solution that
chooses a randomly generated alternative strategy after losing
and compared it against the evolutionary player. Figure 3
illustrates the results. We can observe that this strategy results

0 1500 3000 4500 6000 7500 9000

0

0,15

0,3

0,45

0,6

0,75

0,9

1,05
Population A

Player B

time

fitness

Fig. 2. Evaluation: Comparison of co-evolutionary player (A, red line) with
a manually pre-optimised, static player (B, blue line).

in a constantly higher success rate (i.e. about 24%) but is still
significantly outperformed by the evolutionary approach.

0 1500 3000 4500 6000 7500 9000

0,15

0,3

0,45

0,6

0,75

0,9 Population A
Player B

time

fitness

Fig. 3. Evaluation: Comparison of co-evolutionary player (A, red line) with a
player that chooses a randomly generated alternative behaviour, if unsuccessful
in the preceding round (B, blue line).

As a conclusion for Experiment 1, we can state the evolu-
tionary approach works as intended and outperforms simple
static solutions.

C. Experimental 2: Co-Evolution

In the second experiment, we compare the success of two
populations that both follow the outlined evolutionary opti-
misation loop, i.e., we investigate the co-evolution scenario.
Both opponents have the same chance to win and follow
the same optimisation scheme. The difference lies in the
choice of random variables. Consequently, we assume that
the averaged behaviour converges towards similar results.
Furthermore, we expect the standard deviation to decrease with
higher generation numbers.

Figure 4 illustrates the achieved results. On average, both
players win 50% of the games. We can observe that the
standard deviation slightly decreases over generations. We can
further observe that the co-evolutionary optimisation process
leads to a periodic behaviour (expressed in the evolution
of the standard deviation values): Although the average is
almost constant at 50%, the standard deviation has a cyclic
increase/decrease behaviour. This is due to the fact that as soon
as one player finds a better solution, he is at an advantage for
a certain number of rounds. The oscillation emerges from the

0 1500 3000 4500 6000 7500 9000
0

0,15

0,3

0,45

0,6

0,75

0,9 Population A

Population B

time

fitness

Fig. 4. Evaluation: Comparison of two co-evolutionary players.

need for adaptation by the losing player, and it illustrates the
“arms race” mentioned in Section II-A.

Figure 5 illustrates the behaviour of both populations at the
beginning of an optimisation run (these are values from one
exemplary run, no averages). In Figure 5(a), the success rates
of the populations are evaluated. We can see that this oscillates
– but result in about 50% wins per player as expected.
Figure 5(b) shows the success rate of the representatives (i.e.
those individuals that are tested against the whole opposing
population). Here, we can see a faster convergence compared
to the entire population – this means that the process quickly
identifies reasonably good candidates in both populations.

Figure 5(c) to 5(f) illustrate the decisions that are taken.
The decisions are coded using a colour scheme: High resource
utilisation (i.e. up to the maximum utilisation of 100%) are
coded in red, while low resource utilisation (i.e. down to 1%)
are coded in blue. The x-axis show the time for the last 65
generations, with 0 identifying the current game. The y-axis
specifies the particular decisions to be taken (more precisely:
the certain round of the game and its decision). One can
see that the algorithms tends to start with medium resource
utilisation decisions at the beginning (i.e. decision round 0)
and decreases afterwards to lower utilisation decisions.

D. Experimental 3: Fitness Function

The next experiment analysis the behaviour considering
the different fitness functions as introduced in Section III-F.
Figure 6 illustrates the results using the absolute encoding
scheme, while Figure 4 is based on relative encoding. Com-
paring both figures, we can observe that the relative encoding
scheme has advantages, since it results in better converged
solutions. Especially considering the standard deviation mea-
sured for both approaches, we can see that the absolute
encoding scheme results in significantly higher values – which
is an indicator for non-successful solutions.

E. Experimental 4: Mutation Probability

In Section III-E3, we defined two configuration parameters
for the behaviour of the mutation strategy: (a) defining the
maximum allowed mutation deviation and (b) defining the
mutation probability. Figure 7 shows the results for the first
parameter. We investigated a step-wise configuration of the

10 20 30 40 50 60

Timestep

0
0,15
0,3

0,45
0,6

0,75
0,9

W
in

Ra
te

A

B

(a) Success rates for populations.

10 20 30 40 50 60

Timestep

0
0,15
0,3

0,45
0,6

0,75
0,9

W
in

Ra
te

A

B

(b) Success rate for representatives.

0
0,1
0,2
0,3
0,4
0,5
0,6

-60-50-40-30-20-10 0
Time

0
1
2
3
4
5
6
7

D
ec
isi
on

s

(c) Decisions taken by Population A.

0
0,1
0,2
0,3
0,4
0,5
0,6

-60-50-40-30-20-10 0
Time

0
1
2
3
4
5
6
7

D
ec
isi
on

s
(d) Decisions taken by Population B.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

-60-50-40-30-20-10 0
Time

0
1
2
3
4
5
6
7

D
ec
isi
on

s

(e) Decisions taken by representative A.

0
0,15
0,3
0,45
0,6
0,75
0,9

-60-50-40-30-20-10 0
Time

0
1
2
3
4
5
6
7

D
ec

isi
on

s

(f) Decisions taken by representative B.

Fig. 5. Exemplary analysis of the first 70 rounds comparing the success rates (a and b) of representatives and populations. Part c to f illustrates the decisions
taken by representatives and population: high resource utilisation is depicted in red, low resource utilisation in blue (see legend at the right side).

0 1500 3000 4500 6000 7500 9000

0

0,2

0,4

0,6

0,8

1 Population	A
Population	B

Fig. 6. Evaluation considering the absolute encoding scheme

maximum mutation rate using 5% steps. The figure exemplar-
ily shows the results for 20% and 40%. Again, the standard

parameters as shown in Table I have been applied.
As illustrated by the figure, a higher maximum deviation

due to mutation entails more generations towards convergent
behaviour. In general, the parameter has only minor influences
– within the shown range the behaviour is quite similar. Only
to both extrema, the behaviour is influenced in a negative
manner.

Figure 8 illustrates the results for varying the mutation
rate. Again we analysed the behaviour based on steps of
5% intervals. Figure 8(a) investigates an exemplary mutation
rate of 20% and Figure 8(b) of 50%. The difference is
clearly visible: The higher the mutation rate, the lower the
convergence (i.e. the higher the standard deviation). Again, we
investigated a step-size of 5% and a configuration according
to other work from the literature (see e.g. [14]) of 20% results
in the best performance.

0 1500 3000 4500 6000 7500 9000

0,15

0,3

0,45

0,6

0,75

0,9 Population	A
Population	B

(a) Maximum Mutation: 20 %.

0 1500 3000 4500 6000 7500 9000
0

0,15

0,3

0,45

0,6

0,75

0,9 Population	A
Population	B

(b) Maximum Mutation: 40 %.

Fig. 7. Evaluation: Varying the maximum deviation rate due to mutation.

F. Experimental 5: Crossover

In Figure 4, we already used probability crossover. In
contrast, Figure 9 shows the results when using two-point
crossover. When comparing both results, we can see that the
impact of the decision has only low impact: Both perform
similar. The same holds for one-point crossover (not shown
here).

G. Experimental 6: Population Size

As a last experiment, we analysed the impact of changing
the population size. In general, a larger population size allows
to transfer more “knowledge” to the succeeding generation.
Figure 10(a) show the results for a population size of 10,
while Figure 10(b) uses a very large size of 1000. As expected,
the standard deviation decreases and the system benefits from
more available diversity and knowledge with increasing popu-
lation size. Hence, the decision about the size is mostly limited
by storage, timing and computation boundaries.

V. CONCLUSION

This paper investigated a solution for a fair and efficient
resource allocation scheme in distributed self-organised sys-
tems. The idea is to provide a playground in which jobs can
“fight” for the resource. We modelled this as a two-player
game and presented a co-evolutionary approach to i) self-
optimise the own strategy by playing against oneself, and b)
compete against each other for the resource and improve the
behaviour over time as a result of competition.

0 1500 3000 4500 6000 7500 9000

0,15

0,3

0,45

0,6

0,75

0,9
Population	A
Population	B

(a) Mutation Probability: 20 %.

0 1500 3000 4500 6000 7500 9000

0,15

0,3

0,45

0,6

0,75

0,9
Population	A
Population	B

(b) Mutation Probability: 50 %.

Fig. 8. Evaluation: Varying the mutation rate.

0 1500 3000 4500 6000 7500 9000
0

0,15

0,3

0,45

0,6

0,75

0,9 Population	A
Population	B

Fig. 9. Evaluation: Two-Point Cross-Over

The experimental evaluation compared different configura-
tions of the possible strategies and control variables. Initially,
we demonstrated that the approach works in the desired way
by comparing the evolutionary strategy against two static con-
cepts. Afterwards, we derived beneficial configuration settings
for the considered variables.

Current work focuses on two aspects: Initially, we apply
the approach to the resource allocation problem as introduced
in the motivating example: smart camera control. We aim at
demonstrating the fairness and efficiency of the developed
solution in a real-world environment. In addition, we want to
extend the concept towards more opponents. More precisely,
the current approach covers only a decision problem with two
opponents and we want to come up with a solution that is
equally fast and reliable.

0 1500 3000 4500 6000 7500 9000

0

0,2

0,4

0,6

0,8

1 Population	A
Population	B

(a) Population size 10, 10000 generations

0 150 300 450 600 750 900

0,2

0,3

0,4

0,5

0,6

0,7

0,8 Population	A
Population	B

(b) Population size 1000, 1000 generations

Fig. 10. Evaluation of the impact of varying the population size. Different
scale at y-axis due to different standard deviations.

REFERENCES

[1] G. Muehl, M. Werner, M. Jaeger, K. Herrmann, and H. Parzyjegla, “On
the Definitions of Self-Managing and Self-Organizing Systems,” in Com-
munication in Distributed Systems (KiVS), 2007 ITG-GI Conference,
Kommunikation in Verteilten Systemen, 26. Februar - 2. März 2007 in
Bern, Schweiz, Feb 2007, pp. 1–11.

[2] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and
Paradigms, 2nd ed. Prentice Hall, 2013, iSBN-13: 978-1292025520.

[3] C. Müller-Schloer, “Organic Computing: On the feasibility of con-
trolled emergence,” in Second IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS
Merged Conference), Sept. 8-10, 2004, Stockholm, Sweden. ACM
Press., 2004, pp. 2–5.

[4] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf,
“The evolution from single to pervasive smart cameras,” in Distributed
Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International
Conference on, Sept. 2008, pp. 1–10.

[5] K. Yip, P. Patel, P. Kim, D. Engelman, D. McDermott, and M. Gerstein,
“An integrated system for studying residue coevolution in proteins,”
Bioinformatics, vol. 24, no. 2, pp. 290 – 292, 2008.

[6] T. D’Hondt, K. D. Volder, K. Mens, and R. Wuyts, “Co-Evolution
of Object-Oriented Software Design and Implementation,” TheKluwer
International Series in Engineering and Computer Science, vol. 648,
no. 2, p. 207224, 2002.

[7] A. Cherns, “The principles of sociotechnical design,” Human Relations,
vol. 29, no. 8, pp. 783 – 792, 1976.

[8] M. A. Potter and K. De Jong, “A Cooperative Coevolutionary Approach
to Function Optimization,” in Proceedings of the International Confer-
ence on Evolutionary Computation. The Third Conference on Parallel
Problem Solving from Nature: Parallel Problem Solving from Nature,
ser. PPSN III. London, UK: Springer-Verlag, 1994, pp. 249–257.

[9] K. O. Stanley and R. Miikkulainen, “Competitive Coevolution Through
Evolutionary Complexification,” J. Artif. Int. Res., vol. 21, no. 1, pp.
63–100, Feb. 2004.

[10] R. Dawkins and J. R. Krebs, “Arms races between and within species,”
Proceedings of the Royal Society of London Series B,, vol. 205, p.
489511, 1979.

[11] C. D.Rosin, “Coevolutionary Search Among Adversaries,” Ph.D. disser-
tation, University of California, San Diego, San Diego, CA, 1997.

[12] Siang Yew Chong and Peter Tino and Xin Yao, “Measuring general-
ization performance in coevolutionary learning,” Evolutionary Compu-
tation, IEEE Transactions on, vol. 12, no. 4, pp. 479–505, 2008.

[13] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimisation procedure,” Artificial Life, vol. 2, no. 10, pp. 313–323,
1991.

[14] T. Ranjeet, “Coevolutionary algorithms for the optimisation of strategies
for red teaming applications,” Ph.D. dissertation, School of Computer
and Security Science, Edith Cowan University, 2012.

[15] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed.
Prentice Hall International, 2014, ISBN13: 978-1292061429.

[16] D. Wiest, “Some properties of schedules for large projects with limited
resource,” Operations Res., vol. 12, pp. 395–416, 1964.

[17] B. Gavish and H. Pirkul, “Algorithms for multi-resource generalized
assignment problem,” Mgmt. Sci., vol. 37, no. 6, pp. 696–713, 1991.

[18] A. Moselhi and P. Lorterapong, “Least impact algorithm for resource
allocation,” Can. J. Civ. Engineering, vol. 20, no. 2, pp. 180–188, 1993.

[19] F. Talbot and J. Patterson, “Optimal methods for scheduling projects
under resource constrains,” Proj. Mgmt. Quarterly, vol. 12, no. 1, pp.
26–33, December 1979.

[20] E. W. Davis and J. Patterson, “A comparison of heuristic and opti-
mum solutions in resource-constrained project scheduling,” Mgmt. Sci.,
vol. 21, no. 8, pp. 944–955, 1975.

[21] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Genetic
Algorithms, Tabu Search, Simulated Annealing and Neural Networks.
Springer Verlag, 1999.

[22] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed., ser. Natural Computing. Springer Verlag, 2015, iSBN-13:
978-3662448731.

[23] K. Weicker, Evolutionäre Algorithmen, 3rd ed. Wiesbaden, Germany:
Springer Vieweg, 2015, iSBN-13: 978-3658099572.

