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Abstract—In this paper, we shed light on the phenomenon
of self-organisation in the context of computer games. Self-
organisation is an important concept that intersperses a broad
range of real-world domains—from economy over ecology, the
built infrastructure, distributed technologies to the life sciences.
Yet, self-organisation is often hard to recognise and especially
hard to control. Computer games can amend this problem by
training players to cope with self-organising systems interactively.
Here, they can continuously interact with self-organising systems,
explore them without jeopardy and gain foundational insights
in their dynamics. We present several examples of commercial
titles that integrate aspects of self-organisation as well as several
academically motivated games that explicitly build on top of it.
We further propose a taxonomy on the use of self-organisation
in gaming contexts and we conclude with an outlook on potential
future works in this direction.

I. INTRODUCTION

Schools of fish, flocks of birds, and social insect colonies—
these systems consist of large populations of possibly heteroge-
neous, mostly simple, reactive agents. The interactions of the
individuals may result in system-wide emergent phenomena
such as efficient mass transport [1], effective foraging [2],
population-wide defence strategies [3] or the construction of
complex adaptive nests [4]. The lack of a central control,
the decentralised, locally acting individuals, together with the
possibility of emergent phenomena render swarms a metaphor
for self-organising systems. As such, the swarm metaphor
bridges between local interactions and global outcomes, be-
tween diversity and homogeneity, between the individual and
the population. It highlights the discrepancy and the liaison of
different levels of abstraction. Due to the spatial and traceable
nature of swarms, this metaphor provides a perspective on
scientific models that promises accessibility, flexibility, and
scalability of complex systems. Consequently, computational
swarms are not only a metaphor for self-organisation but for
self-organisation at our fingertips, or interactive self-organisa-
tion. But how can one interact with a complex system that, by
definition, organises itself? How can one guide its individuals
to address important tasks and to fulfil globally defined goals
of their users? The answers to these questions do not come
easily: A scientific approach would utilise formal methods
of information theory, graph theory and nonlinear, complex
systems in the attempt to answer these questions. An overview
of these methods of guided self-organisation (GOS) can be
gained from [5]. However, despite great efforts, a universal,
optimal way for mastering self-organising, complex systems
has not been found, yet. Also, large numbers of interacting
agents with numerous properties and the hard and potentially
multi-objective goals, often render it infeasible to formalise a
given challenge to begin with. Considering the fact that the

users might not even know their goals to begin with or that
their goals might change over time, as for instance addressed in
[6], a one-stop analytical solution becomes outright impossible.
Alternatively one may rely on the established method of trial
and error, which, of course, is a tedious, iterative process
that jeopardises the good use of resources over long periods
of time. Computer games have the potential to mitigate the
problem. Here, the user/player can systematically explore the
dynamics of self-organising systems without negative side-
effects and build up a repertoire of solutions for various real-
world problems. He can change the self-organising systems’
properties on the fly, consider changing goals and changing
environments. In this paper, we present several examples of
self-organisation in computer games, discuss potential training
effects and argue for its deployment to enrich gaming expe-
riences. The remainder of this paper is structured as follows.
In Section II, we exemplarily present some gaming titles that
appeared over the years in the market and that deployed
self-organisation. In Section III, we present several academic
gaming titles that are specifically built on top of the notion of
self-organisation. In Section IV, we comprehensively discuss
preceding and presented works and we propose a taxonomy
for interactive self-organisation. We conclude with a summary
and an outlook on potential future work in Section V.

II. RELATED WORK

Considering self-organisation, we can turn towards games
in which the player needs to take control over a large number
of units and concert their interplay to meet globally defined
criteria. A number of computer games has been dedicated to
infrastructure networks that are the backbone of the engineered
society. First released in 1989, the computer game Sim City has
a long-time standing in the market [7]. Here, the player learns
to layout infrastructure networks while building flourishing
cities. Less playful, with a rather tight focus on economics,
Power TAC tries to make informed predictions about viable
economic settings in a liberalised, decentralised electricity
market [8]. With similar goals, the serious game Infrastratego
captured the decision-making strategies from more than three
thousand played games against human players that tried to
optimise (a) policy making and (b) price negotiations in an
open energy market [9]. While these and other titles, directly
draw benefit from simulating the networked production and
dissemination of electrical power, their common theme is
rather universal: Diligently configuring nodes to make them
serve the functionality needed in a complex interwoven sys-
tem, adding missing pieces and slimming down whenever
possible—these are the general challenges brought about by
the network perspective, whether applied to economics, life
sciences or engineering. The interaction possibilities offered



by countless realtime strategy (RTS) games, including titles
such as Dune, StarCraft, or Battle Zone [10], allow the user to
select, navigate, control, and manipulate individual (typically
military) units and subsets of the system alike. As in self-
organising systems, these units would often follow default
behaviours without the interference by the player. Yet, he may
take control to support their organisation to reach certain goals.
The one-to-many relationship between the player and large
numbers of units under his control is even more pronounced
in games such as Pikmin and Overlord [11], where the player
navigates an avatar from 3rd person perspective, which can,
in turn, command his followers. Over the decades, games
have introduced a great variety of interfaces for dealing with
large numbers of (semi-)autonomous units such as zooming in
on individuals, reading the status, reverting back to a global
view, selecting units of specific kinds or commandeering hand-
picked subsets. For all of these interaction tasks, numerous
solutions have been presented. Some of which worked rather
well, such as selection in 2D views, or selection simply by
adjusting the number of required units. The latter technique
is, for instance, used in the science fiction strategy game
Galcon, and its open-source counterpart Planet Wars [12],
where the player directs swarms of units to defend his planets
and to conquer new ones. Other interaction tasks, such as
the introspection of individual units in Carrier Command:
Gaea Mission, may seem bothersome. However, systematic
research on these and other questions regarding the usability
und user experience for handling self-organising systems has
just recently begun, mainly driven by the increasing availability
and accessibility of robotic swarm systems. An overview of
the current state of the art in the resultant research discipline
of human-swarm interaction can be found in [13]. Although
self-organisation is often an important game mechanism, to our
knowledge no preceding study has been conducted towards the
formulation of an according taxonomy of self-organisation in
games. Existing classifications around self-organisation mainly
focus on the complexity of the arising phenomena themselves.
von Neumann’s concept of cellular automata, i.e. state-based
cells arranged in grids with neighbourhood-based transition
functions, is frequently used to provide insights at an abstract
generic level of self-organisation [14]. In 1984, Wolfram
introduced four according classes of emerging system states:
Spatially homogeneous, simple period, chaotic aperiodic, and
complicated localised, propagating ones [15]. In this paper, we
review several games around self-organisation and formulate
a taxonomy for their classification. We consider this an im-
portant first step for explicitly and effectively deploying self-
organisation in future games.

III. GAMES BUILT ON SELF-ORGANISATION

In this section, we present a selection of games built around
self-organisation that we have developed since 2009. We start
our presentation with titles that allow the player to take
control of a single element in a self-organising system, thereby
influencing the other members of a collective. This perspective
can be translated, for instance, to technical systems, where
the user controls or configures individual elements, such as
robotic units [13] or smart cameras [16], at a time. Next, we
focus on the concept of regulating populations in terms of
size and in terms of diversity. We then discuss opportunities
to establish certain interaction topologies among the agents of

a self-organising system. Assuming a self-organising system
may deploy different global strategies, choosing the right one
at the right time offers another point of access for playful
interactions. We conclude this section with two titles where the
user determines the success of self-organising systems solely
by manipulating their environments.

A. Playing a Swarm Individual

In Figure 1, a swarm-based game prototype is shown, in
which the player is directly immersed in the process of flocking
formation. In particular, the player’s task is to influence the
overall flock, while only navigating one individual. That being
said, all the so-called boid individuals accelerate based on
those few neighbours they perceive [17]. In the attempt to
concert a flock only navigating one individual, the user quickly
gains an intuitive idea of how to control an individual’s flight
pattern. A simple game setup challenges the player to get
a number of swarm agents from a starting area to a goal
location [18]. Figure 2 shows a second example of playing

Fig. 1: Screenshot of a flocking game. The player’s individual
(highlighted by three white arrows) guides its peers from a
starting platform (bottom-left) towards the goal (top-right). On
their way, various obstacles need to be circumvented.

an individual of a self-organising system. Here, the player
is presented with a side-view of a bee hive. He can select
a single bee with the mouse, toggle the maintenance default
state to defence mode and navigate the bee towards a target.
In defence mode, the bee attracts its peers to join the defence
patrol by spreading pheromones across the combs. If the player
navigates the bee to find a flower outside the hive, it recruits
its peers in a similar manner to join its foraging efforts after
returning to the hive. These recruits will head towards the last
visited flower. In an extended version, we ported the beehive
simulator to smart phones and tablets. In addition to a well-
structured level-based design with various quests including
sustainable population growth and food storage for the winter,
we introduced a 3D flight mode (Figure 3). As soon as the
player navigates a bee to the outside of the hive, the view
switches into this mode. Once the bee has been successfully
landed on a flower, it will appear in 2D mode as well and
recruited peers can be instructed to fly directly to that flower.
The flight performance shown in Figure 3 only contributes to
processes of self-organisation as soon as the bee returns to its
hive and starts recruiting peers for foraging. But we have also
investigated the dynamics of self-organisation that can arise in
a collective motion setting in 3D, as seen in Figures 4 and 5. In
these examples, similar to the game presented in Figure 1, the



Fig. 2: Screenshot of a 2D beehive simulator. The player
selects a single bee, sets its state (maintenance, foraging,
defence) and navigates it wherever needed most. Leaving
pheromone trails, it recruits other bees to join its cause.

Fig. 3: In the 3D mode of the extended beehive simulator, the
user can control a single bee to find resources in a feature rich
environment.

player takes control of a single individual to guide a collective.
It poses a multi-objective challenge which includes keeping the
collective together, shaping its formation as well as guiding the
collective’s direction and speed. Generally speaking, the player
needs to continuously exploit the behaviours of the collective’s
individuals in order to reach certain transient, system-wide
states.

B. Regulation of the Population

Instead of influencing the emergent behaviours of self-
organising systems by controlling a single individual bottom-
up, there are numerous titles that allow the player to influ-
ence them top-down by regulating the population of involved
individuals. In the aquarium game shown in Figure 6, the
player is tightly limited to only adding and removing individual
components of the system [19]. As, for instances, the (pre-
defined) sizes of possible fishes result in different metabolic
rates, they impact the ecosystem to varying degrees. Provision
of food and the neutralisation of excrements can be indirectly

Fig. 4: The user can navigate a specific individual (the orange
coloured bird in the center of the view) to guide the flock (the
birds in the background), if it is close enough.

Fig. 5: A mobile game where the general flight trajectory is
predefined but the player needs to navigate the white bird in
order to pass targets and to guide, maintain and utilise a great
number of swarmettes (the pink cones).

promoted by planting algae and introducing underwater snails.
Figure 7 shows a screenshot of an explorative in-browser
construction game [20]. Here, the player can visually program
individual, swarming builders. As part of the programming,
the individuals are instructed to procreate, differentiate or die
off. As a result, different from the game shown in Figure
6, the individuals’ configuration adds another dimension of
population regulation. The parametric configuration of the
individuals that is also offered in the game further extends
the players’ freedom of interaction.

C. Establishing Topologies

The composition of populations of self-organising systems
is an important mode of influence for facilitating certain
global states or processes. However, it does not take the
situational relationships of the individuals into account, e.g.
their neighbourhood relations, which are a major determinant
of the emergent state of a system. In the examples shown
above, the interaction topologies emerged from the interplay



Fig. 6: An aquarium game in which the player is tasked to
keep an ecological balance by regulating the constituents of
the system.

Fig. 7: A construction game in which the user may configure
individual elements that themselves regulate the population of
interacting components.

of agent parameterisation, starting configurations and player
interference. In this section, we show instances of games on
self-organisation where the player can interfere with existing
and establish new topologies. The game displayed by Fig-
ure 8 urges the player to battle the outbreak and spreading
of diseases. Individuals travel across the infrastructure that
connects buildings serving different needs, e.g. residential
complexes, pubs, grocery stores and hospitals. In case one of
the inhabitants of this virtual world gets infected the player
can implement measures to contain and, ideally, revert the
outbreak. To this end, he can modify the predefined infras-
tructural network by setting up barricades or locks that only
allow passage in one or the other direction. Over the course
of the game, the infrastructural layouts and the properties of
the spreading diseases are altered to increase the challenge but
also the individuals’ AI adjusts to maximise its well-being. In
Figure 9, a screenshot of a serious game on power grids is
shown [21]. Depending on the playing mode and the level, the
user may need to alter the parameters of existing units, build
new consumer or producer nodes of the network and connect
them properly. The flow of power among producers, relay
stations and consumers is animated by offsetting the striped
texture on the connections between nodes and by scaling their
geometries. Figure 10 shows a screenshot of a serious game

Fig. 8: In this game, the player prevents the outbreak of
diseases by establishing barriers and locks along the everyday
paths of the player AIs.

Fig. 9: In this power grid network simulator, the player builds
producer and consumer nodes and hooks them up. Challenges
are as diverse as repairing existing infrastructures, building
them from scratch, or revamp them, e.g. aiming at higher levels
of sustainable power production.

around routing networks. Conceptually, it is very similar to
the title shown in Figure 9, albeit its different application
domain: Data (visualised as postal packages) needs to be wired
across the network and find its proper recipient. The player
can facilitate his efforts by improving the servers’ hardware
and by installing various routing protocols. Different from the
previously shown title on power networks, the servers’ limited
numbers of connections are an important gaming mechanism
that drives the continuous expansion of the network to handle
an increasing data load.

D. Manipulating the Environment

Another important direction of concerting self-organising
systems builds on indirect communication (or stigmergy [22]).
In biology, self-organisation often relies on local cues. Cues in
biology are often chemical signals that spread and evaporate
over time or templates in the built environment. We focused



Fig. 10: The player is tasked with setting up, extending and
maintaining a communication network in order to deliver
packages to their recipients reliably and fast.

on the first in the title presented in Figure 11. The game
pursues two different goals: (1) Facilitation of the exploration
and education about indirect communication by means of
pheromones and (2) design and evaluation of an interface for
commandeering large numbers of agents by means of digital
pheromones. Starting from the player’s base, the agents explore
the flat landscape randomly. If they find resources along their
way, they pick some up and directly return to the base. On
their way back, they release pheromones that would decay
after some time, but first they increase the probability of other
agents following the trail and contributing to the foraging. In
addition, the player can deploy pheromones to quickly guide
the agents towards resources, to avoid enemies or to stage an
attack. The game seen in Figure 12 multiplies and enriches the

Fig. 11: Foraging and defence agents are guided by the player
by spraying digital pheromone trails on the map. The goal is
to harvest as many resources as possible within a given time.

available user interactions [23]. Here, the player cannot only
lay out and remove pheromone trails but he can also place
resources and build physical barriers. We even implemented a

virtual reality version of the game featuring a head-mounted
display, immersive GUIs and game controller input to increase
immersion and presence. The goal of this exploratory game is
to keep the colonies of a native and an invasive, superior ant
species in check.

Fig. 12: In this virtual reality game, the player can spray and
wash away pheromone trails of two ant species (one native, one
invasive) to keep them in balance. He may also build physical
barriers with bricks or set out new food sources.

E. Alternating Strategies

In this section, we present four titles that stress the need
for self-organising systems to alter strategies when facing
changes to their environment. In Figure 13, the player directly
changes the parameters of a homogeneous self-organising
swarm that flocks in a 2D space [18]. These parameters
impact, for instance, the individuals’ attraction to each other
or the configuration of their fields of view. Concrete settings
may result in loose or tight clusters of swarms as well as
more directed behaviours, including line formations, spreading
into different directions, etc. The player then utilises these
respective behaviours in order to maintain as many individuals
for as long as possible, avoiding traps (in red), and picking up
as many resources as possible (in yellow). As fine-tuning the

Fig. 13: While the environment is constantly moving in one or
the other direction, the swarm needs to be adjusted to harvest
as many yellow particles as possible, avoid contact with red
areas and overcome physical obstacles (in black).



parameters of a self-organising system is hard and requires lots
of experience, especially in fast-paced, arcade-style games as
the one presented in Figure 13, we introduced a means of
support. In Figure 14, one sees a screenshot of the supporting
sub-game. In order to retrieve desirable flocking behaviours,
the player may place tiles on the ground and an evolutionary
optimisation engine runs in the background to automatically
find parameter settings that make the swarm cover those
tiles for as long as possible. Next, the user can select his
previously evolved configurations in a flocking game such as
the one shown in Figure 13. To further support the player

Fig. 14: The player can evolve certain flocking strategies that
fulfil globally defined goals, such as maximising the swarm’s
exposure to the manually placed orange tiles. These flocking
strategies can be utilised for the game in Figure 13.

in mastering self-organising systems, different configurations
of self-organising systems can be manually setup or learned
offline and made accessible to the player during the game, as
seen in the following example. Figure 15 depicts the screenshot
of an early prototype of a game in which the user navigates a
flock of firefighting drones. It is his task to find sources of fire
and extinguish the flames in due time. In order to achieve this
goal, the player needs to take control of the swarm by steering
one leader individual (as in Section III-A), by assigning flight
targets in direct sight, by dividing the flock into subgroups to
cover several spots at the same time—for extinguishing fire
or for refilling the drones’ water tanks. While taking direct
control of one individual, the player can instruct the swarm
by performing certain gestures to alter its flight formation
between v-formation, line-formation and dense/loose cluster
(the game is played using either multi-touch or hand gestures).
In this way, the player ensures that the locations of the swarm
individuals are perfectly attuned to the task (releasing/picking
up water) during those periods of time the flock is in a target
zone. As pointed out in Section II, besides flocking games,
realtime strategy games are especially interesting in the context
of self-organisation. Typically, in an RTS, the player aims at
exceeding an opponent in terms of resource gathering, number
of deployable units and stationary buildings. StarCraft Brood-
wars is an established commercial RTS-title which provides an
elaborate programming API for implementing artificial players,
or artificial intelligences (AIs). Furthering the autonomy of
self-organisation still, we implemented four AIs with basic
default characteristics and with the ability to learn [24]. We
trained them in hundreds of matches (three hundred matches
for each AI) and validated their training successes in another
few hundred rounds (150 for each AI). In the end, the player

Fig. 15: In order to refill water tanks and extinguish fires, the
player needs to commandeer a swarm of firefighting drones:
Navigate them, split them into subgroups, assign them to
different targets, bring them back together and change their
flight formations.

could use any of the four AIs, let them play autonomously or
enrich their behaviours in accordance with his own ideas. A
screenshot of an evolved aggressive AI is shown in Figure 16.

Fig. 16: We designed and evaluated several learning AIs for
the RTS game StarCraft Broodwars.

IV. A TAXONOMY OF SELF-ORGANISATION IN GAMES

In the context of games, we are particularly interested
in the manner in which interactions between human users
and self-organising systems are realised as well as their
impact. Examining the examples of Section III, we observe
commonalities and differences with respect to the following
characteristic dimensions: level of control, i.e. comprehensive
sets of self-organising system components, subsets and individ-
uals, target of control, i.e. manipulation of the environment,
population management, definition of topologies, instruction of
strategies or activities, changes in behaviours and parameters,
granularity of control, i.e. global goals, subgoals, strategies,
activities, parameters, view, i.e. top-down 2D visualisation,
isometric views, 3D immersive, first or third person views,
fixed cameras, predefined trajectories with limited degrees of
freedom, unhindered camera navigation, interface, i.e. param-
eter GUIs, visual programming UIs, interactive maps, multi-
touch interfaces, gamepad or mouse, time of interference,
i.e. discrete (before or after a single step or playing phase) or



continuous (throughout the game or during specific phases).
Clearly, the choice of the respective features greatly depends
on the contents and mechanics of the game and it is not
limited to games on or driven by self-organisation. Yet, the
level, target, and granularity of control can be detached from
the concrete application context and therefore deserve closer
inspection.

A. Level of Control

We would like to start our discussion of the dimension of
level of control by referencing another line of work that at-
tempts to capture the basic features of self-organising systems.
The level of control directly opposes the degree of autonomy
of a self-organising system. Measures of autonomy have, for
instance, been introduced in the context of organic computing
[25], a research initiative with the goal of harnessing biological
principles for technical systems. To measure the degree of
autonomy of a system, one first describes its variability V ,
i.e. the binary logarithm of the magnitude of the set of
different configuration states of the system, which is equivalent
to the number of bits in a vector that fully describes the
system’s configuration. Second, we shed light on the number
of configuration bits that the user proactively manipulates and
infer the so-called external variability Ve that is controlled
by the user and the internal variability Vi that is controlled
autonomously by the system. The degree of autonomy of
a system is then defined as α = Vi−Ve

Vi
. For a concrete

application of this concept, let us consider the aquarium game
presented in Section III-B. Here, for each organism the player
adds to the ecosystem, he also introduces roundabout five
variables that interact with the remainder of the system. Hence,
the system’s autonomy is constant at α = 5−1

5 = 80, resulting
in a level of control of 20%. The calculations are more involved
for the pheromone-based RTS game displayed in Figure 11.
The degrees of freedom of each agent comprises two basic
states (attack or foraging mode), whereas in foraging mode,
the agent may be searching or bringing in resources. While
searching, an agent may take a turn into any direction in two-
dimensional space. Both, state and direction can be controlled
by the user; a state can be switched directly, the direction can
be imposed by laying out pheromone trails. Accordingly, the
autonomy of the system may theoretically be evened out by the
user, i.e. α = 0. Yet, this result is not fully satisfying, as it does
not take the target of interaction into account. Consider, for
example, flocking games with one leader agent, as illustrated in
Figures 1, 4 and 5—the application of pheromone trails implies
a more immediate impact on the respective self-organising
system than taking control over a single agent. For this reason,
we will investigate the target of control next.

B. Target of Control

The potential control space, i.e. the entirety of data the user
can manipulate, comprises the self-organising system itself as
well as its environment. As pointed out above, the description
of this space is a first step, but it requires an additional
layer of information that captures the potential impact of
any targeted, atomic manipulations. Due to feedback loops,
chains of interdependencies and potential phase transitions in
self-organising systems, this challenge cannot be addressed in
general terms. However, one reasonable way to account for the

potential impact of individual manipulations lies in looking at
the numbers of directly affected components of the system over
a predefined timespan. Returning to the example from Figure
11, let us estimate the impact of spraying a straight line on the
game board. Due to the default dissipation rate, the maximal
length of the trail is half the dimension of the board. Early in
the game, when the agents are leaving the base, at most 50%
of them can be attracted to follow the trail. At a later point
in time, when the agents might almost be evenly spread, only
about 10% of all agents would perceive the line, resulting in a
refined, target-specific level of control ranging between 10 and
50%. Applying the same train of thought to the flocking games
with one leader agent (Figures 1, 4, 5), the connectivity of the
leader agent to its peers ranges from 0 to 100% depending
on the peers’ fields of perception and their relative locations,
which are determined by their autonomous flocking behaviour
and the leader’s position. Clearly, the more control the user can
exercises, the better he can achieve his goals. Therefore, the
difficulty for the player lies in exhausting, and at the same time
directing, the target-specific level of control. More specifically,
the player needs to master a control target with respect to
the goals of a game, also taking into account detrimental or
boosting elements (such as the obstacles in Figure 1). Choosing
and improving the most effective available control target can
be another important skill for a game.

C. Granularity of Control

Granularity of control is the last characteristic dimension
that we would like to briefly discuss. Again, we propose to
pursue a quantitative approach to gain a descriptive handle
on self-organisation in games that we can work with. To this
end, we first take a look at the biggest (predefined), accessible
entity that occurs in a game, for instance whole military fleets
as in Figure 16 or flocks as in Figure 15. Then we investigate
top-down, whether there are any underlying components that
we can access as well. In the given examples, these would
be smaller commandos or subsets of swarming drones. Next,
we would look at the individuals, then their behaviours, and
finally the parameterisation of the behaviours. Step by step,
we build a wood of trees whose roots represent the interaction
entities of the greatest granularity of control and the leaves
those of the finest granularity. Depending on the design and
contents of the game, the player might only be allowed
to access certain levels of these granularity trees and only
under certain circumstances. For the purpose of comparison,
properties of the resulting woods can be analysed. The fraction
of the number of leaves and the number of roots, gd = l

r ,
captures the quantitative relationship between the most minute
control instructions and the units controlled at the highest level.
Accordingly, this fraction expresses the averaged degree of
control for each high-level unit. Applying this measure to the
matches ran to train self-learning AIs in StarCraft Broodwars
(Figure 16), we consider the player’s fleet the highest level
entity. It consists of 83 individual military units (64 Zerglings,
12 Hydralisks, 2 Ultralisks, 4 Scourges and 1 Queen) that all
can, in theory, be individually instructed to move into arbitrary
directions on a 2D map (two degrees of freedom) and which
have one or two modes of attack. Overall, there are roughly
l = 83 × (2 + 1, 3) = 273, 9 micro-instructions available,
which in the given case equals gd. In case not all high-
level units can be selected and instructed in unison, as in the



pheromone-based RTS (Figure 11), gd drops fast, here to about
gd = 75×(2+1)

75 = 3. In the firefighting drones game (Figure
15) a deeper tree emerges, as we cannot only commandeer the
whole flock, but because we can recursively divide it in two
subswarms, each of which can be sent to specific landmarks
on the map (on average about five landmarks at any point
in time). Hence, the recursive division scheme that applies
here coincides with the game’s tree of control granularity. In
case of elaborate woods or trees, investigating the trees’ depths
alongside the branching factors can be understood as indicators
of the system’s complexity.

V. CONCLUSION AND FUTURE WORK

We presented fifteen different games that revolve around
self-organisation or in which self-organisation plays an impor-
tant role. While presenting them, we emphasised commonali-
ties such as the principle of taking control of a single leader
individual and thereby impacting a self-organising system. We
turned to titles next where the player can influence the compo-
sition of self-organising systems at the population level. In ad-
dition to local configuration and system-wide population con-
trol, we identified the manipulation of the topologies among
interacting components as well as their model environments to
be important targets of control. The highest level of control of a
self-organising system is to merely alternate its strategies over
time. Based on examples that entertained these perspectives to
varying degrees, we proposed a taxonomy of self-organisation
in games. In particular, we introduced the notions of level
of control, target of control, and granularity of control. We
exemplarily applied the respective measures to some of the
presented games and discussed their potential meaning for
honing game mechanics. We are fully aware that despite
the modest variation of presented examples, our observations
cannot make any claims towards completeness. Whole genres,
such as puzzlers, in which self-organisation may provide for
seminal game mechanics, have not been considered. Although
we believe that the measures and perspectives we introduced
are helpful for capturing the relationships between players
and self-organisation, they can only represent a first step
towards a longer term attempt to classify, quantify and exploit
mechanisms of self-organisation in games. To this end, we
want to propose a rigorous investigation of the suggested
measures in terms of player experience and opportunities for
deployment.
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