
An Evolutionary Approach to Behavioural Morphometrics
Melanie Däschinger
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ABSTRACT
In this short paper, we brie�y outline the design of a new framework,
BOODLE (BiOlOgical DeveLopment Environment), that empowers
biologists to retrace developmental processes at the intercellular
level. �is framework allows one to import volumetric data as
retrieved by micro-CT scanners. Meta-information such as labels
of speci�c regions can be imported or annotated interactively in
the virtual simulation environment. Consistently labelled series of
multiple embryonic scans that have been recorded at di�erent times
capture developmental processes. In order to generate models to
retrace the underlying dynamics, we deploy a Genetic Algorithm
(GA). �e GA optimises the parameters of physics-based virtual
cells to retrace the captured processes in a simulation. In particular,
the �tness of a set of parameters is calculated based on compar-
isons between the emerging geometric shapes and the real-world
information. �e real-world data is provided by said annotations
or inferred from grey values captured by the CT scans. To support
e�ective evolutionary optimisation, the user interface supports the
user during the import and re�nement of CT-data sets, the editing
of landmarks, the popluating of imported volumetric data with
virtual cells, and the con�guration of the Genetic Algorithm.
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1 INTRODUCTION
In this paper, we provide a quick overview of a Biologist-in-the-
Loop modelling and simulation system called BOODLE (BiOlOgi-
cal DeveLopment Environment) and we present early results that
demonstrate its comprehensive functionality. More speci�cally, we
show that BOODLE can import recorded micro-CT-data alongside
some metadata, harness the grey values of the CT-scan to initialise
a virtual cell population and utilise a Genetic Algorithm (GA) to
optimise the model’s parameters. BOODLE not only provides a
vast array of functionality but it also provides user interfaces for
each stage of the involved data processing processes. For instance,
meta-data, e.g. markings of certain anatomic regions of an embryo,
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cannot only be imported but also added and adjusted manually.
�ese informations are the foundation for calculating the �tness
values of any of the GA’s solutions. In particular, a�er importing the
volumetric data of the embryonic body, we populate the geometric
structures with virtual cells—either automatically based on grey
values of the CT-scans or manually by means of according 3D user
interaction widgets that we have designed. �e cells, con�gured
by means of the GA, change themselves and each other over time.
In case their changes correspond closely to the recorded data, the
parameter model is considered be�er.

2 RELATEDWORK
�e emphasis of BOODLE lies in the interactivity of the system—in
terms of realtime simulation (similar to [1]), in terms of con�gura-
tion (similar to [6]), but also with respect to various optimisation
criteria. �e challenge is multifaceted: Build on empirical data,
allow the user to de�ne constraints, let the system automatically
close model gaps. �us, BOODLE needs to approximate globally
emerging developmental structures based on cellular behaviours.
�is top-down-challenge coined the term guided self-organisation
(GSO). GSO implies that a process of self-organising results in de-
sirable global changes of a system without having been given clear
instructions on how to get there. �ere are formal approaches
to GSO which are based on the theory of complex systems. An
exemplary result based on formal work is the quanti�cation of
parameters’ in�uences on state changes of in complex systems [3].
Complementarily, formal deliberations could help one to infer the
extent to which individual agents of self-organising systems are
capable to handle a range of situations [5]. In this paper, the self-
organised process of organismal development based on intercellular
interactions is guided by means of a GA.

3 BOODLE OVERVIEW
We employ a particle-based so� body representation of the cells
exterior based on the FLEX physics engine [2], providing control
over the cells’ individual shape and their physical interactions. �e
cell model is further designed in accordance with [4]. �e main
parameterization categories are cohesion, division and substance
di�usion. By means of a visual programming interface, the user
can de�ne cells with individual behaviours and parameter sets. He
can also de�ne certain categories of cell types that the GA can
deploy and �ne tune to maximise a cell population’s �tness. To
support empirical research, BOODLE allows to import CT scan
data and meta data into the simulation contexts, to mark surfaces
and volumes, to populate speci�c areas with virtual cells, and to
observe, measure and log simulated model alterations.
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Figure 1: Four volumetric scans of embryos with di�erent
markers (light green) represent four simulation states.

4 EVOLUTIONARY OPTIMISATION
Due to potentially large search spaces, we have chosen evolutionary
optimisation approaches to close model gaps and tweak parameters.
We extended a standard GA to consider time series of target states
[7]. For each target state, we calculate a distance measure between
the target volume’s convex hull and the convex hull of the volume
of the cell population emerging from a given solution. We calculate
the morphological �tness FM of the solution’s phenotype and a
speci�c target state i as the inverse of the distance measure. Factors
such as structural properties of emerging tissues, the ordering of
cells, or a multitude of additional constraints could de�ne additional
�tness criteria. In terms of �tness criteria, this demonstration is
rather speci�c. We also only target a very small part of the embryo.
�e genotype of the cells speci�es the following behavioural pa-
rameters of a cell: its sti�ness, its maximal distance for adhesion
and maximal number of adhering cells, division based on physical
stresses due to other cells, stress thresholds, and whether only a
single involved cell divides, division based on chemical signals and
the respective threshold, reaction to morphogens, its morphogen
emission rate, and how it is a�ected by morphogen gradients. We
created a small mock-up example based on embryonic chick CT-
data sets. For each of four target states, we introduced changes in
the shape and the spatial dimensions. Next, we populated the initial
surfaces with two types of virtual cells. �e genetic algorithm was
con�gured to feature a population of ten solutions of 80 bits at a
time, deploy probabilities of bitwise mutation pm = 0.05 and one-
point crossover recombination pr = 0.3, and to select descendants
based on roule�e-wheel selection. Figure 2 shows an example of
an average performing solution. It can be observed how one cell
type dominates the other, how the number of cells grows, and how
the morphology evolves and di�erentiates its shape.

5 CONCLUSION
We presented the concept of BOODLE, an interactive simulation
framework for developmental biologists. It represents a Biologist-in-
the-Loop simulation for the exploration of developmental processes.
It features import and annotation of volumetric CT-data sets and
morphometrically relevant data and automatic preprocessing nec-
essary for real time model building, simulation, and optimisation.
Data preparation is modelled closely along the work�ow of devel-
opmental biologists, for example by using morphological landmark

F (t1) = 0.25 F (t2) = 0.18 F (t3) = 0.19

Figure 2: An average performing phenotype, yielding a total
�tness values of 0.62.

information. A genetic algorithm was used to optimise cell be-
haviour on annotated CT-data time series, allowing to successfully
approximate tissue formation in limited areas.
�e development of the user interface needs to be continuously
evaluated and optimized with respects to usability and user experi-
ence, and speci�cally with egards to the target audience. Also, an
in-depth analysis of the features of the physical cell model, espe-
cially its parameterisation, is needed.
As an important next step, we need to identify and adapt a rather
generic but equally performant variant of an evolutionary algo-
rithm. �e evolutionary optimization we realized is still very lim-
ited in scope and capability. A more thorough and demanding
experiment, making use of time series data of chick development, is
planned to be performed as soon as we receive the corresponding
data. It will emphasize the high dimensionality of the interacting
factors and put the scalability of our system, in terms of voxel data
handling, the simulated cell count, and the e�ciency of the opti-
mization algorithms to a test. �e evolutionary algorithm may be
adapted to an island model, improving the speed of optimization.
Once the full processing loop for parametric optimisation based
on genetic algorithms is set up, genetic programming techniques
may help in more aptly capturing the complex facets of cellular
behaviour.
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