
3-D Visualization of Dynamic Runtime Structures in
Applications

Marcus Ciolkowski
Principal IT Consultant

QAware GmbH
Aschauer Str. 32

D-81549, München, Germany
marcus.ciolkowski@qaware.de

Simon Faber
kasai GmbH

An der Stiftsbleiche 11
D-87439 , Kempten, Germany

s.faber@kasasi.de

Sebastian von Mammen
University of Würzburg

Head of Group Games Engineering
D-97074, Würzburg, Germany
sebastian.von.mammen@

uni-wuerzburg.de

ABSTRACT
Continued development and maintenance of software requires un-
derstanding its design and behavior. Software at runtime creates a
complex network of call–callee relationships that are hard to deter-
mine but that developers need to understand to optimize software
performance. Existing tools typically focus on static aspects (e.g.,
Structure101 or SonarQube), or they are difficult to use and require
high expertise (e.g., software profiling tools).

Unfortunately, these dependencies are hard to derive from static
code analysis: For one, static analysis will reveal potential call–
callee relationships not actual ones. Second, they are often difficult
to detect, since information systems today increasingly use abstrac-
tion patterns and code injection, which obscures runtime behavior.

In this paper, we present our efforts towards accessible and in-
formative means of visualizing software runtime processes. We
designed a novel visualization approach that utilizes a hierarchical
and interactive 3-D city layout based on force-directed graphs to
display the runtime structure of an application. This promises to
reduce the time and effort invested in debugging programming
errors or in finding bottlenecks of software performance.

Our approach extends the city metaphor for translating pro-
grammatic relationships into accessible 3D visualizations. With the
identified goals and constraints in mind, we designed a novel visual
debugging system, which maps programming code structures to
3D city layouts based on force-directed graphs. Exploration of the
animated visualization allows the user to investigate not only the
static relationships of large software projects but also its dynamic
runtime behavior.

We conducted a formative evaluation of the approach with a
preliminary version of a prototype. In a series of six interviews with
experts in software development and dynamic analysis, we were
able to confirm that the approach is useful and supports identifying
bottlenecks. The interviews raised and prioritized potential future
improvements, several of which we implemented into the final
version of our prototype.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWSM Mensura ’17, October 2017, Gothenburg, Sweden
© 2017 Copyright held by the owner/author(s).
ACM ISBN
https://doi.org/....

CCS CONCEPTS
•Human-centered computing→Graph drawings;Visual an-
alytics; Empirical studies in visualization; • Software and its en-
gineering → Extra-functional properties; Software usability;
Agile software development; • Social and professional topics→
Software management; • Information systems → Enterprise in-
formation systems;

KEYWORDS
software quality, runtime metrics, call structure, 3D visualization
ACM Reference format:
Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen. 2017. 3-D Vi-
sualization of Dynamic Runtime Structures in Applications. In Proceedings of
International Workshop on Software Measurement and the International Con-
ference on Software Process and Product Measurement, Gothenburg, Sweden,
October 2017 (IWSM Mensura ’17), 10 pages.
https://doi.org/....

1 INTRODUCTION
Continued development and maintenance of software requires un-
derstanding its design and behavior. Without additional efforts,
software processes are both complex and invisible. Therefore, un-
derstanding software design and behavior can be a time-consuming
and challenging task. Mastering this task is a key competency in
the contested software development market and accounts for 40 to
60% of the time invested in software maintenance jobs [1]. There
are several tools that help in shedding light on specific aspects of
software. Yet, not every facet can be covered. The “broken win-
dow” metaphor [18], for instance, stands for an important aspect
in software quality management. Similar to a broken window in
buildings that sends signs of neglect and invites vandalism, finding
and fixing even small and trivial defects as soon as they are detected
prevents their potentially far-reaching repercussions. Therefore, it
is mandatory to measure and collect indications of quality deficits
continuously. Tools such as SonarCube [5] support continuous anal-
ysis but focus mostly on static aspects of software quality. However,
dynamic behavior of software is often neglected. For instance, call–
callee dependencies between structural artifacts, such as packets
or methods, and drops in performance caused by inappropriate
dependencies are difficult to spot. This is aggravated by the in-
tensive use of abstraction patterns and code-injection techniques
in modern information systems. Analytics tools that can reveal
such relationships are complex, have a steep learning curve and are
typically only used by software analytics experts. The majority of

https://doi.org/....
https://doi.org/....

IWSM Mensura ’17, October 2017, Gothenburg, Sweden Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen

developers relies on reading source code, which is time-consuming
and error-prone.

The field of software visualization addresses the outlined prob-
lem of understanding and improving software by generating vi-
sualizations that convey the required information about designs
and processes [11, 21]. In 2002, Charters et al. proposed mapping
software to cities [8]. Cities host static elements including buildings
and traffic infrastructure. Wettel et al. focused on this aspect of
cityscapes to visualize static elements of object-oriented software
designs. For instance, in Code City [37], buildings represent classes,
quarters represent packages. In principle, all those software ele-
ments can be considered static that are accessible by merely brows-
ing the program’s source code and without running the software
program. Complementing static city elements, dynamic processes
such as method calls could be animated as vehicles driving from
one building to another. The majority of people is familiar with the
city metaphor [36], which promotes timely and effective orienta-
tion of developers [15]. The city metaphor naturally constraints
visualization in three-dimensional space. For instance, buildings
do not hover above the ground (yet), which mitigates issues of
accessibility that may arise in 3D visualizations that extensively
utilize the third dimension as well [10, 12].

In this paper, we present our efforts towards developing a pro-
totype for visualizing the dynamic structure of software runtime
processes. Software cities have been used highlighting code qual-
ity [35], visualizing engineering progress [33], shedding light on
system behaviors for the purpose of reverse engineering [2], edu-
cating about software design [3], and for presenting the coverage
of tests [32]. In addition, there have been preceding works on visu-
alizing dynamic call–callee relationships and showing performance
bottlenecks (e.g., [16, 17]). We have systematically reviewed their
contributions with respect to our goals, combined them and ex-
tended them, where necessary. In particular, we started with the
definition of three different use cases from which particular system
requirements emerged. This process and its results are detailed
in Section 2. Next, in Section 3 we stress the contributions of re-
lated work that we improved upon. In Section 4 we present our
approach. Section 5 provides details about our evaluation method-
ology and the evaluation’s results. We conclude with a summary
and an outlook on potential future work in Section 6.

2 USE CASES AND REQUIREMENTS
The application logic of an object-oriented software system is dis-
tributed across numerous methods. During runtime, the position of
individual processing threads leaps from one of these methods to
the next. These events are referred to as method calls. One of them
can lead to any number of subsequent method calls. We consider
runtime behavior the timed succession of method calls during the
runtime of a software. Our visualization of runtime behavior aims
at serving three use cases:

(U1) Software developers are supported in understanding the
runtime behavior.

(U2) Software developers are supported in localizing potential
performance issues or bottlenecks.

(U3) Experts for dynamic analysis of applications are supported
in gaining an overview of potential bottlenecks.

Software developers, the target group of U1, often do not have
a comprehensive knowledge about a software’s runtime behavior.
Reasons for this include the system’s overall size, the fact that the
source code presents all possible call–callee interdependencies (and
not only those executed at runtime), or the lack of an up-to-date
specification of the project. This is additionally obscured by exten-
sive use of code injection techniques and abstraction in modern
information systems. The software developer adjusts, corrects or
extends a specific aspect or functionality of the software. Use case
U1 aims at supporting the software developer in understanding the
runtime behavior of the code block he works on, so that unwanted
side-effects can be avoided. Typical questions by software develop-
ers include [29, 31]: From which origin is a specific method called?
How do method calls propagate through the system? Which classes
communicate with each other? Which components call each other?
In order to answer these questions, a visualization is effective if it
shows call–callee interdependencies but does not overwhelm the
developer by showing too many elements at once (which is true in
all three use cases). In fact, the developer wants to adjust the level
of detail of the visualization in accordance with his current focus.

Use case U2 again focuses on software developers as target group
and refines U1. It assumes that they are not experts in runtime anal-
ysis, and hence they have little knowledge about using analysis
tools such as profilers. When correcting, adjusting or extending
existing code, software developers run the risk of introducing new
bottlenecks which may cause long latencies or even failures during
the use of the software. Therefore, U2 aims at supporting devel-
opers in identifying and localizing potential bottlenecks during
development. Typical questions of a developer with respect to soft-
ware performance include [9]: Which methods consumemost of the
time? Are there method calls that take unusually long to execute?
Where do more than the average of method calls originate from?
Where are queries stalled when propagated through the system?
Accordingly, the visualization has to provide fine-grained insights
in time consumption and the respective, involved method calls. It
is effective, if it supports the developer in quickly spotting unusual
behaviors such as short bursts of heavy computational loads or long
computing periods and associated pieces of code. Individualized
filtering mechanisms should be in place to allow for more elaborate
inquiries. The visualization has to maintain the relationship to the
structural artifacts so that performance bottlenecks can be directly
related to specific pieces of code.

The task of dynamic analysis experts consists of identifying
performance bottlenecks and of planning the implementation of
countermeasures. To this end, they rely heavily on profiler tools,
they analyze log files of the applications, and they use low-level
metrics such as stack trace dumps or heap dumps (where runtime
memory contents are written out for inspection). These tools and
approaches generate large amounts of fine-grained data, which
results in long analysis procedures. This analytical process can be
supported by quick identification of bottlenecks that need to be
investigated further. Typical questions by analytics experts include
[9]: Are there clusters of methods that together consume a lot
of time? Where do queries get stalled on their way through the
system? Accordingly, the visualization should communicate the
big picture of interdependencies and time consumption. It should

3-D Visualization of Dynamic Runtime Structures IWSM Mensura ’17, October 2017, Gothenburg, Sweden

further allow the analytics expert to specify various filtering criteria
that allow him to direct his search for performance bottlenecks.

Based on the three use cases the basic requirements of expres-
siveness and effectiveness [25], the following, more detailed re-
quirements can be inferred:

R1 Identify static structures: The approach maintains the re-
lationships between runtime behavior and structural arti-
facts of the code.

R2 Visualize call-callee interdependencies: The approach pro-
vides a clear view on calls between the structural artifacts.

R3 Visualize performance aspects: The approach provides var-
ious performance aspects associated with the structural
artifacts.

R4 Support a drill-down-principle: The approach reveals/hides
details based on demand.

R5 Support directed search: The approach supports the di-
rected search for hot spots.

3 RELATEDWORK
In order to identify those aspects of existing software city ap-
proaches that work well and those that need improvement, we
systematically surveyed the literature following the SLR-guidelines
after Kitchenham et al. [20], which loosely foresee the following
steps: (1) Specify the research questions, (2) determine a search strat-
egy, (3) determine a criterion for exclusion, (4) conduct selection
process. More specifically, we first searched for relevant works that
address requirements R1 to R4. We identified 14 related approaches
in this step. Next, we excluded software city approaches that do not
visualize any runtime information [3, 7, 8, 22–24, 32, 33, 36], that
do not provide overviews of the runtime behavior [30, 34], and that
do not visualize performance bottlenecks [2, 13]. Finally, ExplorViz
[15, 16] and ThreadCity [17] were identified as most closely aligned
with our goals. Details of paper selection criteria are documented
in [14].

3.1 ExplorViz
In the application visualization of ExplorViz packages and classes
are translated to city quarters or buildings which are depicted as
boxes based on a static tree-map layout. Differences in type (pack-
age/class) are encoded in the boxes’ colors. Quarters represented as
flat, wide boxes reveal enclosed structural artifacts, whereas build-
ings hide them. The user can toggle between the two views in order
to reach the desired level of detail. Nested dependencies in code
are mapped to stacked elements in the cityscape of decreasing size.
Accordingly, city quarters represent packets, whereas layers on top
(i.e., buildings) represent hierarchically nested packages or classes.
The height of buildings represents the number of instances of an
element. Streets between buildings depict call-callee relationships,
whereas the width of the streets indicates the number of calls and
arrow depictions visualize the direction of the call. Upon selection
of an individual building, only relations pertaining to the respective
element are visualized. A modified tree-map algorithm [19] layouts
the positioning of the buildings. The user can navigate freely in
the city and zoom into places of interest. Runtime information can
be navigated by means of a timeline, or be traced step by step. Ex-
plorViz also empowers the user to filter method calls with respect

to their consumed amount of time. Figure 1 gives an impression of
ExplorViz’ layout approach.

Aligned with (R1), ExplorViz visualizes the static structure of the
targeted software, yet limited to packages and classes. Call–callee
relations (R2) are depicted as streets between elements of potentially
differing types. Replay of stack traces makes it possible to analyze
the call dynamics over time. However, no effort is made towards
clear and transparent visualization of these relationships—streets
can overlap and intersect, which results in cluttered graphs, difficult
to interpret [7]. Furthermore, sequences or more complex call dy-
namics are not visualized but need to be investigated step-by-step.
Considering (R3), ExplorViz provides access to several performance
measures encoded in street width and building dimensions. Un-
fortunately, these measures are fixed and means of extensions, for
instance to integrate the execution time, are not provided. (R4) is
realized as the user can navigate freely and focus on details of a
specific level of the code hierarchy. However, there is no function-
ality to blend out arbitrary structural elements but descending on
a specific hierarchy level requires that all the nodes above in the
tree-map are unfolded as well. Directed search (R5) is fulfilled in
that different metrics are displayed concurrently. However, specific
search targets cannot be specified.

Figure 1: ExplorViz: Layout and display of dynamic relations
as overlay over a static TreeMap layout.

3.2 ThreadCity
ThreadCity aims at the interactive exploration of multi-threaded
systems [17]. The concrete goals are understanding the program
structure and conducting performance analysis. The software is
built on a 2D birds-eye city visualization, where gray streets rep-
resent packages and orthogonally extending, slightly smaller al-
leys depict (recursively) nested packages. Blue buildings represent
classes that are part of the respective packages and are therefore
aligned with the streets. This layout method is also referred to as the
EvoStreets approach [33]. Differently colored lines of traffic flow
from one building to another (and sometimes alongside each other)
visualize call–callee relationships. Circle and bar diagrams are di-
rectly embedded in the city visualization and reveal the relative
computational load caused by the respective packages and classes.
The user can choose to visualize specific system threads, move the

IWSM Mensura ’17, October 2017, Gothenburg, Sweden Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen

2D camera and zoom into relevant areas. Streets together with all
alleys and buildings can be faded out. Selecting individual streets
or buildings reveals additional information and, in the latter case,
blends in all traffic to and from the specific building. A timeline
allows the user to leap to time intervals he is interested in. Figure 2
gives an impression of the layout approach of ThreadCity.

(R1), the need to visualize the static structure, is fulfilled by show-
ing buildings and streets, depicting packages and classes. However,
there is no option to visualize additional layers of the static hier-
archy. The topology of the hierarchy is mapped to the topology
of streets and alleys. Considering (R2), call-callee relationships are
depicted as traffic flow lines among potentially different types of
structural elements. Traffic animations on the respective sides on
the road visualize directionality. The overview is quickly lost due to
parallel flow lines and frequent overlaps at intersections. (R3), the
visualization of performance measures, is addressed by projecting
informative charts into the city visualization. However, these data
are strictly limited to the amount of method calls and not config-
urable to reveal other metrics such as execution times. Due to the
tight relationship between the code hierarchy and the visualization,
arbitrary artifacts cannot be filtered out. In order to find a specific
search target, as in (R5), ThreadCity provides overview diagrams
at different levels of the hierarchy and the user can narrow down
the search step-by-step. However, the metric cannot be adapted to
the user’s search goals.

Figure 2: ThreadCity: EvoSreet layout and information dis-
play.

4 VISUALIZATION APPROACH
As detailed in the previous section, ExplorViz and ThreadCity sup-
port many of the identified requirements. Therefore, we adopt
the metaphors of buildings representing static structural artifacts
and streets/traffic depicting call–callee relationships. Variable di-
mensions of buildings and streets intuitively correspond to their
respective importance, which is why we adopted these performance
cues, together with the 3D perspective from ExplorViz. In both ap-
proaches, the user can drill down the code hierarchy to interactively
find a balance between visual clutter and data coverage—we also
adopted this mechanism. To overcome the shortcomings of both
approaches, we additionally addressed the following issues.

(1) We introduced novel ways to comprehensively visualize
the progression of call events.

(2) We allow the user to visualize structural artifacts at more
fine-grained levels than packages and classes.

(3) We provide a flexible interface for defining additional per-
formance measures.

(4) We allow the user to effectively direct the search for rele-
vant system dynamics.

(5) We changed the city map layout to improve clarity and
scalability.

(6) We made sure that arbitrary sets of visual elements can be
hidden.

4.1 Data Collection
We generate the interactive software city from runtime information
of executed Java byte code utilizing an existing software tool [28].
It uses a byte-code injection mechanism to implement “instrumen-
tation” [38], which means that additional information is added to
the program code at the beginning and end of a method definition
to capture accurate information about the arising call dynamics.
This tool collects the following information about each method call:

• caller and callee of the method call
• the fully qualifying reference for each (package, class and

method names)
• the time consumed by the method call
• call path (i.e., caller sequence) for this method call

We store the runtime information in a Neo4j graph database and in-
teractively visualize it by means of Unity3D (a widely-spread engine
for developing interactive simulations and game) after program
execution. We implemented this sequential workflow to increase
the flexibility of our prototypic design. Once the design will have
outgrown the prototype status, it will be be feasible to run analyses
at real-time by switching to the paradigm of first-in/first-out data
stream processing by eliminating the intermediate csv log step.
Figure 3 gives an overview of data collection and processing.

Transform:
Create graph model
from runtime data

Visualize:
Create 3-D model

from graph

CSV-Log Neo4j-Data BaseJava Application Software City

Collect data:
Measure and store

runtime data

Figure 3: Overview of data collection and processing

4.2 Primary Visual Elements
We decorated the buildings with simple shapes to quickly discern
their types (see Figure 4): Buildings with spheres on the roof rep-
resent packages, whereas an additional white box at the highest
floor represents a class. All other buildings depict methods—boxes
monochromatically shaded based on their owning artifacts.

Streets between buildings represent call–callee relations, whereas
colored, moving vehicles indicate the direction of these relation-
ships. Sequences of method calls are represented as streams of
vehicles of a particular color, which fulfills an important aspect
of (R2). In analogy to building dimensions, streets assume one of

3-D Visualization of Dynamic Runtime Structures IWSM Mensura ’17, October 2017, Gothenburg, Sweden

three dimensions depending on the relative numbers of calls they
represent, again relating to (R3). In addition, streets with high traffic
volumes pull their attached buildings closer together, which results
in clearly visible clusters.

The user can focus on a specific element by selecting it (e.g., a
package). This will depict only on incoming/outgoing traffic of this
element. Thus, it is possible to investigate potential bottlenecks in
detail.

Figure 4: Buildings and streets in our software city visualiza-
tion.

4.3 Basic Layout
We have decided to implement a force-directed layout, as it is able to
reflect the hierarchical relationships among structural code artifacts
(R1), and as it is the only layout approach that we could identify
that provides a clear visualization of dynamic relations such as
call–callee relationships (R2). Figure 5 shows the resulting layout.

We have examined several layout alternatives: Next to the afore-
mentioned tree-map and ThreadCity’s EvoStreet layouts, which
map the code hierarchy to recursively generated geometries [36],
several other layout methods for software visualization have been
proposed. For instance, circular layouts or lattice arrangements
efficiently use space and facilitate the ordering of classes based on
metrics such as lines-of-code or age [2, 24].

Force-directed layouts treat graphs as physical systems with
repelling and attracting forces between their elements. Typically,
nodes repel each other (like charged particles), while edges draw
nodes together (like springs). This results in organic, non-overlapping,
aesthetically attractive layouts that are particularly suited for visu-
alizing networks [4, 27].

Figure 5: The city layout as seen from above focuses on ac-
tual run-time dependencies.

Our layout approach represents structural artifacts such as pack-
ages, classes and methods as easily distinguishable buildings. In
terms of metrics visualization, (R3), users can switch between sum,
maximum or average processing time spent on the artifact (see
Figure 6).

Figure 6: The elements’ relative dimensions visualize perfor-
mance values of the respective artifacts.

4.4 Hierarchies and Artifact Ownership
As data are collected at a fine level of granularity (i.e., methods),
the visualization allows focusing on arbitrary levels of the code
hierarchy (see Figure 7). Hierarchical relationships between struc-
tural artifacts are conveyed by allowing abstraction (i.e., bottom-up
substitution of lower-level elements) as well as drill-down (i.e.,
breaking down higher-level elements). For instance, a “class build-
ing” may be replaced by its hosted methods’ buildings. The other
way round, if a lower-level artifact is substituted, the respective
building as well as all associated streets are removed. After in-
troducing or removing one or more artifacts, the force-directed
layouting algorithm re-arranges the layout accordingly. In order to
communicate the relationship between the previous and the new
layout, the transition between the two is animated. Our approach
implies that only one level in the code hierarchy is visualized for
each structural artifact at the same time; that is, either children or
parents in the code hierarchy are visualized, never both.

We provide three different cues to ensure that the different levels
of ownership of the artifacts are transparent to the user: (1) Text
fields reveal links to the parents. (2) Siblings in the hierarchy are
highlighted when an artifact is selected. (3) The colors assigned to
different packages are chosen from a palette of contrasting hues
and they are inherited by their enclosed classes and methods. For
as long as building types are distinguishable this approach conveys
the static structural hierarchy (R1). The interactive substitution
hierarchy also allows the user to drill down from the highest level
of structural artifacts to those most interesting to him, aligned with
(R4). The tandem of filtering out irrelevant data and zooming in
on important details in combination with the free movement in
3D space effectively supports well-directed user-driven searches
(R5). This functionality is furthered by aggregating performance
measures at nodes of higher levels. For instance, a class building’s
height represents, by default, the total amount of processing time
used up by all its methods. Alternative performance measures can

IWSM Mensura ’17, October 2017, Gothenburg, Sweden Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen

be easily added at the code-level of our software and, if desired,
mapped to the building heights or other visual cues.

Package Building

Class Buildings

Method Buildings

Figure 7: Schematic substitution of buildings.

4.5 Interactions with the Software City
Next to direct interactions with the buildings and streets, we offer a
heads-up display (HUD) interface to the user, shown in Figure 8. It
overlays the view and provides additional information and configu-
ration options. The legend (element A) helps interpreting the basic
visual elements and relates them to individual colors. Additional in-
formation on selected elements, such as name, type and location in
the code hierarchy as well as various associated performance mea-
sures, is provided through the inspector (element B). The inspector
also offers buttons to break down high-level artifacts in the code
hierarchy. When the user hovers over a building with the mouse
pointer, text field (C) shows its name and type, providing quick
high-level information for orientation and browsing. Button (D.1)
opens the configuration menu (D.2) that provides configuration op-
tions of the view in accordance with the user’s goals. Here, one can
change the mapping of building dimensions to represent absolute
or relative execution times. In addition, one can exclusively choose
packages, classes or methods to be visualized. These functionalities
emerged from expert interviews as explained in the next section.
(E) provides a text field for setting filters to prune the visualization
in accordance with one’s search goals that allows to filter artifacts
based on substrings in their names. This functionality, too, is an
outcome from the expert interview we conducted.

Some elements of the HUD provide feedback and further options,
when the user directly interacts with individual artifacts in the
visualized scene. When the mouse pointer hovers over an artifact, it
highlights to signal its readiness for interaction. (C) provides high-
level information. When clicked, the artifact is selected, highlighted
with even brighter color, it is mounted on a yellow circle, its siblings
are mounted on white circles to understand the hierarchical context
(Figure 9) and further information is shown in the inspector (B).

5 EVALUATION
We conducted six expert interviews to evaluate the expressiveness
and effectiveness of our approach in the context of the use cases
that motivated our work as outlined in Section 2. Our main goal was
to confirm that the approach and prototype are relevant and useful,
to improve them where necessary and to provide guidance for

future enhancements. To this end, we conducted a simple formative
evaluation (i.e., an evaluation during a project’s implementation
to improve its design and performance) with an early version of
our prototype. The final prototype presented in this paper already
contains improvements that were prioritized in the evaluation. In
particular, we formulated the following four evaluation goals (EG):

EG1 Relevance: Are our goals and the use cases U1–U3 relevant
to daily work within the company?

EG2 Expressiveness: A visualization is expressive if it encodes
all the information intended and no other information
[6, 26]. In our case, we phrase this as: Are the visualization
metaphors understandable, and do they encode all and only
the required information?

EG3 Effectiveness: A visualization is effective if it presents all
information clearly and allows quick understanding [6, 26].
In our case, we phrase this as: Is the visualization able to
support U1–U3 in a cost-effective manner; in particular,
does it help to quickly identify bottlenecks?

EG4 Future improvements: One main goal of the interviews was
to suggest and prioritize potential enhancements to the
visualization approach.

Data collection and analysis procedure:We chose to conduct open,
semi-structured interviews. This leaves a lot of space for detailed
feedback also about future enhancements. We asked the intervie-
wees to verbalize their thoughts (i.e., to follow a think-aloud pro-
tocol). We used notes taken by two recorders of the interview for
analysis. One person coded the transcripts, and one person verified
the coding. In addition, we used closed questions on a 5-point Likert
scale to back up the qualitative statements with quantitative ratings
and to quantify agreement for EG1–EG3.

Threats to validity: The main threat to validity is external: The
work place of the interviewed experts (QAware GmbH) strongly
focuses on software quality, which might have biased the evalu-
ation results towards this particular domain. Regarding internal
validity, coding and its verification were done by two researchers,
and both were involved in prototype development. We believe these
threats to validity to be acceptable, since the main goal of this eval-
uation was formative in nature: to confirm whether the prototype
proceeded in a relevant direction for software analysts in general,
for the company’s purposes in particular, and to provide guidance
for future development. However, although the prototype and the
evaluation were targeted towards a specific company, we believe
that the use cases themselves are relevant for other companies, too.

5.1 Subjects and Context
The prototype development and evaluation were done within the
context of QAware GmbH, and all interviewees are employees of
QAware. QAware develops software applications for its customers,
whereby all projects have to fulfill a quality contract—an integrated
quality measurement and assessment based on SonarQube. Apart
from software development and maintenance projects, one impor-
tant business field is analysis and renovation of legacy systems.
Here, dynamic analysis of runtime behavior is a crucial task and
QAware’s experts have a high degree of experience and expertise.

Altogether, we conducted six interviews—representing about
10% of QAware’s employees. Four interviewees were experts in

3-D Visualization of Dynamic Runtime Structures IWSM Mensura ’17, October 2017, Gothenburg, Sweden

Figure 8: Heads-up display for our software city. Figure 9: A selected building is shown on a yellow circle,
its code hierarchy siblings on white ones.

the analysis of runtime behavior of software, two of them chief
technologists with more than 15 years of experience; the other
two of them lead technologists with 8–10 years of development
and runtime analysis experience. Two additional interviewees were
software developers—with 2–4 years of development experience,
but with less experience in runtime analysis. The analysts’ feedback
would ensure that all the data is provided by our visualization that is
relevant for inspecting runtime processes, whereas the developers
can test the support received during design and implementation.

5.2 Interview Execution
The six interviews were conducted with a single interviewee each.
We targeted a one hour time frame. We gave an introduction (5 min)
to inform about the prototype’s goals and the interview procedure.
This was followed by discussing the use cases (15 min), using the
prototype (15 min), and discussing it (25 min).

Regarding EG1 (Relevance), we asked to rate the use cases’ im-
portance as well as that of improving current workflows on a 5-
point Likert scale. We additionally asked which tools the intervie-
wee currently used for analyzing the runtime behavior, and how
they tackled the use cases. To address EG2 (expressiveness), we
asked which information they considered crucial for the use cases.
We then presented our prototype and asked the interviewees to
verbalize how they interpreted the visualization’s elements and
interactions. We let them explore the prototype and provided ex-
planations when appropriate. This allowed exposing obstacles to
understandability. Further, we addressed EG3 (effectiveness) by
asking what hindered quick understanding; particularly, whether
the force-directed graph layout supported analyzing runtime behav-
ior. Lastly, we addressed EG4 explicitly (future improvements) by
asking about missing information, and by inviting ideas for possible
extensions of the approach.

5.3 Results for EG1: Relevance of the Use Cases
The interviewees characterized the current situation to address the
use cases by the need to use several expert tools. One expert men-
tioned a tool that visualizes graphs of all possible call–callee rela-
tionships (Structure101). Generally, these relationships are tracked
by navigating through the program’s source code. UML diagrams

that accompany code bases also show call–callee relationships but
are not a reliable source as the actual implementation might deviate,
as one interviewee explained. Runtime performance of applications
are currently evaluated by means of profiler tools, log files, appli-
cation metric frameworks such as JMX (e.g., active threads, pools,
stack traces, heap sizes), monitoring tools provided by the operating
system (e.g., dtrace), or by measuring execution times. These are ex-
pert tools that are difficult to apply by even senior developers. One
expert described the current paradigm in performance analysis as:
Design first, trouble-shoot when facing problems. All interviewees
agreed that the current situation should be improved on.

Regarding relevance of the use cases, all six interviewees agreed
that they were relevant to their daily work. Further, five out of six
interviewees thought that improvements to the current implemen-
tation of use cases are important or very important. One of them
explained that there were professional tools such as profilers, yet
it was important to make runtime analysis more accessible (U1,
U2). Another one pointed out that addressing the use cases was
very important as current visualizations did not convey relation-
ships in an intuitive manner. This impression was confirmed by
a third expert who also described the current view on software
analysis tools as “very deep-down”. As a result, developers need to
individually acquire an overview, often unassisted by tools. This
perspective was shared by a fourth interviewee who foresaw great
utility of the visualization approach for unexperienced developers.
A fifth interviewee emphasized the great importance of U2 and U3
(supporting the performance analysis by non-experts and experts),
but considered U1 (understanding call–callee relationships) only a
weak use case. A sixth interviewee, one of the two analysis experts,
said that he sees the value in the prototype but that he has not
really needed it, so far. That is, the prototype’s utility for expert
analysts may be improved.

To summarize, there are tools that address use cases U1–U3.
However, these are expert tools that are difficult to apply and that
provide a very detailed view on the software without giving an
overview. As they are known only to analysis experts, visualizations
of process graphs seem to not have been widely adopted yet. In
addition, no expert knew a tool that combined the visualization of
performance bottlenecks and call–callee relationships. The experts
considered new solutions to the use cases as necessary. However,

IWSM Mensura ’17, October 2017, Gothenburg, Sweden Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen

they set their priorities on different use cases, which may stem
from their different work specializations. Overall, the interviewees
confirmed the relevance of our use cases, and thereby the relevance
of our approach.

5.4 Results for EG2: Expressiveness
To evaluate expressiveness (EG2), we wanted to determine whether
the visualization is understandable and useful, and whether it pro-
vides sufficient information for the use cases.

Regarding information need, the interviewees voiced the follow-
ing information need for the use cases: hierarchy levels of the
software; call–callee relationships; and local resource demand, in-
cluding CPU cycles, network input/output and memory load. Fur-
ther, one should be able to track individual requests or calls being
propagated through the software. Hotspots, e.g., methods or classes
that prolong execution times or which are frequently called, should
be discernible. At any time, the global context should be maintained.

The interviewees confirmed that the information provided by
the visualization addresses all their information needed and at the
same time does not provide unnecessary information with few
exceptions: The prototype provides CPU time (not cycles) but no
information on other local resources.

Regarding understandability, five out of six interviewees fully
agreed that the city metaphor is highly understandable and useful,
and one abstained from rating. In more detail, two said it provided
a good perspective to visualize dynamics in 3D space, two praised
the visualization of dynamic method calls. One expert stressed that
the metaphor offered a solid foundation to talk about and discuss
software systems. Besides, he remarked, it provided more fun than
studying software architecture diagrams and IT concepts. Five out
of six interviewees confirmed the prototype’s usefulness in address-
ing the three use cases. One expert did not commit to any ratings.
Four interviewees stated that it was helpful for understanding run-
time behavior and identifying performance bottlenecks (U1 and U2).
Three interviewees said it aided analysis experts (U3). One analy-
sis expert suggested that the visualization should be embedded in
existing profiler tools, and be made available on demand. Two anal-
ysis experts asked for the integration of more performance metrics.
Four interviewees explicitly stated that the drill-down approach to
traverse several layers of the code hierarchy was useful.

To conclude the survey regarding expressiveness, the majority
of experts considered the prototype a useful solution to the use
cases. We notice, however, that only one analysis and two developer
experts found the prototype useful for use case (U3). This limitation
might be overcome by integrating the visualization into established
tools such as profilers and by visualizing more metrics such as
performance measures.

5.5 Results for EG3: Effectiveness
In terms of effectiveness (EG3), we wanted to determine how well
the prototype supported cost-effective support of use cases, in
particular how well it allowed quick identification of bottlenecks.

Regarding effectiveness of the prototype in general, all inter-
viewees confirmed that the approach supports the use cases and
helps to quickly identify bottlenecks. One expert explained that the
prototype helped in focusing on a specific aspect without losing its

context. Another one noted that the visualization was intuitive and
that its interpretations came naturally. Two more experts pointed
out that the prototype provided the most important information
at a glance. Four experts emphasized that the drill-down concept
was useful. One pointed out that the prototype made call cycles
visible, even violations of the architectural specification could be
seen. Similarly, another expert praised that communication part-
ners were clustered together. Another advantage mentioned by one
expert was the ability to present all communication paths and not
to lose any information.

Regarding the force-directed layout, five out of six interviewees
stated that it was useful, since it is driven by the connections among
the buildings. The sixth interviewee did not comment on the layout.
Four experts described the layout as clear. One of them emphasized
that it was interesting to him to search within the given scene,
relying on the given layout. One interviewee said that it was chal-
lenging yet learnable not to lose the global static context when
drilling down the hierarchy. In contrast, three interviewees explic-
itly said that they did not miss hierarchical structural information.

In summary, the interviewees confirmed that our approach sup-
ports the user by providing a clear and intuitive 3-D visualization of
software structures and runtime dynamics. Drilling down the code
hierarchy helps to quickly approach places of interest; HUD ele-
ments such as legend and inspector have been intensively used by
the interviewees. The proposed layout supports use cases U1–U3.

5.6 Results for EG4: Future Improvements
When asked about future improvements, the interviewees described
additional use cases for our prototype. For instance, two experts
explained that the visualization could be utilized for evaluating
software architectures. For example, the prototype can easily be
extended to visualize the test coverage of software or to detect
orphaned code. Other potential use cases include to trace system
or user behavior such as navigation paths of user interfaces. One
expert even envisioned the visualization to become the basis of a
comprehensive refactoring tool. The expert feedback on potential
future extensions makes clear that our approach does not only
support the originally expressed problem statement but that it
could be tailored to various additional use cases.

During the refinement process of our prototype, we gave those
ideas higher priorities that were mentioned by numerous experts
during the interviews.

5.6.1 Expressiveness improvement. Table 1 summarizes the in-
formation the interviewees felt they still needed in order to fully
address use cases U1 to U3. The call for the visualization of addi-
tional/higher levels of the code hierarchy sticks out. This is feasible
but requires extending the data collection pipeline. As pointed out in
Section 4, we have already introduced small extensions the experts
asked for, such as the adaptability of the visualized attributes, or ad-
ditional building dimensions. In addition, we already implemented
several aspects: (1) Include forces along edges that are proportional
to the propagated amount of data. (2) Highlight outliers in terms of
resource usage by mapping maximal execution times to building
heights. (3) Provide the frequency of method calls in the inspector.

3-D Visualization of Dynamic Runtime Structures IWSM Mensura ’17, October 2017, Gothenburg, Sweden

mentions Information lacking for Expressiveness

5 Visualize additional hierarchy layers, e.g. com-
ponents or distributed systems.

3 Provide configuration of the city visualization,
e.g., building heights encode different metrics.

2 - Provide a time window of observed events.
- Visualize static grouping of buildings.
- Represent differences in software versions.
- Display memory consumption.
- Display the software’s communication with
the environment.

- Visualize an application during runtime.
Table 1: Interview feedback on the missing information to
support the captured use cases.

5.6.2 Effectiveness improvement. Table 2 lists those ideas that
were expressed by several experts. Four experts asked for infor-
mation about the artifacts (e.g.,their names), to be projected into
the 3D scene. Again four of them said that filters, for instance by
execution times, would help reduce the number of visible artifacts
and thereby support the user in identifying hotspots. Three inter-
viewees stated that visualizing all artifacts of a specific hierarchical
level at once (e.g., all classes) would be beneficial. The potential use
of the streets’ color attribute was mentioned three times as well.
There were several additional suggestions such as the visualization
of the point of exit of an application, but they were rather specific
and only mentioned by one expert each.

mentions Improvements for Effectiveness

4 - Show labels for artifacts within the 3D scene.
- Provide filter for artifacts, e.g., filter those of
a specific type (e.g., class), those that exceed a
given execution time or number of execution.

3 - Visualize all buildings of one hierarchical
layer, e.g. all classes.

- Utilize street colors.
Table 2: Interview feedback on the potential improvements
to increase the effectiveness of our prototype.

6 SUMMARY & FUTUREWORK
Based on three use cases wemotivated the problem statement of our
work and we inferred requirements for a visualization prototype
we designed and implemented. An in-depth analysis of existing
work revealed that some requirements were covered quite well but
no existing approach addressed R2 (readable layout for dynamic
structures such as call graphs). We extended core ideas of two
approaches (ThreadCity and ExplorViz) to build a novel approach
that mitigates various obstacles to their practical application.

The key elements of our visualization approach comprise (1)
visualizing call events and the resulting call–callee graph, (2) uti-
lizing fine-grained levels of structural artifacts (namely: method
instead of package or class), (3) enhancing the visualization with ad-
ditional performance measures, and (4) adopting a dynamic layout
and means of filtering data to increase clarity.

Based on the preliminary evaluation using expert interviews and
our own insights from developing the prototype, we believe the
following steps would promote the utilization of software cities for
practical development and analysis work the most: Our prototype
relies on an aggregated form of the runtime model (Section 4.1). In
order to achieve greater practical value and empower developers, a
refined approach should also record methods calling themselves,
and the data pipeline should be re-organized to support real-time
analysis. The hierarchy levels that we currently visualize should
be extended to incorporate distributed system components. This
would ensure scalability to systems where issues emerge from net-
working technologies, problems of synchronicity, or from mutual
access to shared data. Moreover, we are currently investigating
whether moving this approach to virtual reality adds value to the
visualization and usability.

In addition to functional extensions, we feel that especially the
following two questions should be addressed in the scope of future
research efforts, since they were raised and emphasized numer-
ous times: (1) “How can the static structure of software be better
visualized?”—our expert interviews emphasized that maintaining
static grouping might be challenging when drilling down the code
hierarchy. At the same time, the independence of the visualiza-
tion from the hierarchy allowed us to adapt the view to the user’s
search targets. Potentially, this discrepancy could be addressed by
secondary visualizations blended in on demand. (2) “How can the ex-
isting prototype be effectively integrated in existing workflows?”—
as the experts mentioned during the interviews, one could embed
it into existing profiler tools. However, one should also consider
the other way round, along with visual programming, and envision
the potential benefits to programming environments and profiler
tools being embedded in software visualizations.

Following the agile principle of avoiding broken windows, it is
important to detect potential quality problems as early as possible.
Consequently, a system’s quality needs to be analyzed regularly,
and it is crucial to make quality assessment part of a common de-
velopment routine. Regarding static code metrics, it is common to
integrate a quality analysis within the standard build chain (e.g.,
using SonarQube): Every build triggers quality measurement. Re-
garding the visualization prototype presented in this paper, we
envision that it can be employed at regular intervals such as sprint
or release gateways, where it is usual to do performance tests. Ad-
ditionally, data collection for the visualization can be automated
and integrated into nightly builds with automated system tests.

ACKNOWLEDGMENTS
We would like to thank all members of QAware GmbH who partici-
pated in the requirements elicitation and the empirical evaluation.
Parts of this work have been supported by the German Ministry of
Education and Research under grant no. 01IS15008D.

IWSM Mensura ’17, October 2017, Gothenburg, Sweden Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen

REFERENCES
[1] Alain Abran, James W. Moore, Robert Dupuis, Pierre Bourque, and Leonard L.

Tripp. 2004. Guide to the Software Engineering Body of Knowledge (SWEBOK).
Angela Burgess. 204 pages.

[2] Sazzadul Alam and Philippe Dugerdil. 2007. Evospaces visualization tool: Explor-
ing software architecture in 3d. In 14thWorking Conference on Reverse Engineering
(WCRE 2007). IEEE, 269–270.

[3] Gergő Balogh, Attila Szabolics, and Arpád Beszédes. 2015. CodeMetropolis:
Eclipse over the city of source code. In Source Code Analysis and Manipulation
(SCAM), 2015 IEEE 15th International Working Conference on. IEEE, 271–276.

[4] Michael Balzer and Oliver Deussen. 2005. Exploring relations within software
systems using treemap enhanced hierarchical graphs. In 3rd IEEE International
Workshop on Visualizing Software for Understanding and Analysis. IEEE, 89–94.

[5] G Campbell and Patroklos P Papapetrou. 2013. SonarQube in Action. Manning
Publications Co.

[6] Stuart Card. 2012. Information visualization. In Human computer interaction
handbook: Fundamentals, evolving technologies, and emerging applications, Julie A
Jacko (Ed.). CRC press, 515–549.

[7] Pierre Caserta, Olivier Zendra, and Damien Bodénes. 2011. 3D hierarchical edge
bundles to visualize relations in a software city metaphor. In Visualizing Software
for Understanding and Analysis (VISSOFT), 2011 6th IEEE International Workshop
on. IEEE, 1–8.

[8] Stuart M Charters, Claire Knight, Nigel Thomas, and MalcolmMunro. 2002. Visu-
alisation for informed decision making; from code to components. In Proceedings
of the 14th international conference on Software engineering and knowledge engi-
neering. ACM, 765–772.

[9] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and
Jeaha Yang. 2002. Visualizing the execution of Java programs. In Software
Visualization. Springer, 151–162.

[10] Andreas Dieberger and Andrew U Frank. 1998. A city metaphor to support navi-
gation in complex information spaces. Journal of Visual Languages & Computing
9, 6 (1998), 597–622.

[11] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,
and evolution of software (1 ed.). Springer Science & Business Media. 187 pages.

[12] C Russo Dos Santos, Pascal Gros, Pierre Abel, Didier Loisel, Nicolas Trichaud,
and Jean-Pierre Paris. 2000. Metaphor-aware 3d navigation. In Information
Visualization, 2000. InfoVis 2000. IEEE Symposium on. IEEE, 155–165.

[13] Philippe Dugerdil and Sazzadul Alam. 2008. Execution trace visualization in a
3D space. In Information Technology: New Generations, 2008. ITNG 2008. Fifth
International Conference on. IEEE, 38–43.

[14] Simon Faber. 2016. 3D Visualisierung des Laufzeitverhaltens von Software. Master
Thesis. University of Augsburg.

[15] Florian Fittkau, Santje Finke, Wilhelm Hasselbring, and Jan Waller. 2015. Com-
paring Trace Visualizations for Program Comprehension through Controlled
Experiments. 2015 IEEE 23rd International Conference on Program Comprehension
(2015), 266–276.

[16] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring. 2013. Live
trace visualization for comprehending large software landscapes: The ExplorViz
approach. In Software Visualization (VISSOFT), 2013 First IEEEWorking Conference
on. IEEE, 1–4.

[17] Sebastian Hahn, Matthias Trapp, Nikolai Wuttke, and Jürgen Döllner. 2015.
Thread City: Combined Visualization of Structure and Activity for the Explo-
ration of Multi-threaded Software Systems. In 2015 19th International Conference
on Information Visualisation. IEEE, 101–106.

[18] Andy Hunt and Dave Thomas. 2002. Zero-tolerance construction [software
development]. IEEE Software 19, 5 (2002), 100–102.

[19] Brian Johnson and Ben Shneiderman. 1991. Tree-maps: A space-filling approach
to the visualization of hierarchical information structures. In Visualization, 1991.
Visualization’91, Proceedings., IEEE Conference on. IEEE, 284–291.

[20] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering. Technical Report. Technical
report, EBSE Technical Report EBSE-2007-01. 65 pages.

[21] Claire Knight and Malcolm Munro. 1999. Comprehension with [in] virtual
environment visualisations. In ProgramComprehension, 1999. Proceedings. Seventh
International Workshop on. IEEE, 4–11.

[22] Kenichi Kobayashi, Manabu Kamimura, Keisuke Yano, Koki Kato, and Akihiko
Matsuo. 2013. SArF map: Visualizing software architecture from feature and
layer viewpoints. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 43–52.

[23] Christian FJ Lange, Martijn AMWijns, and Michel RV Chaudron. 2007. A visual-
ization framework for task-oriented modeling using UML. In System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference on. IEEE, 289a–
289a.

[24] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2005. Visualization-
based analysis of quality for large-scale software systems. In Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering. ACM,
214–223.

[25] Jock Mackinlay. 1986. Automating the design of graphical presentations of
relational information. Acm Transactions On Graphics (Tog) 5, 2 (1986), 110–141.

[26] Jock Mackinlay. 1986. Automating the Design of Graphical Presentations of
Relational Information. ACM Trans. Graph. 5, 2 (April 1986), 110–141. https:
//doi.org/10.1145/22949.22950

[27] Andreas Noack and Claus Lewerentz. 2005. A space of layout styles for hierarchi-
cal graph models of software systems. In Proceedings of the 2005 ACM symposium
on Software visualization. ACM, 155–164.

[28] Christoph Noetzel. 2013. Messung des Laufzeitverhaltens von Software-Systemen
mit Hilfe einer Software-Blackbox. Masterthesis. Hochschule für angewandte
Wissenschaften München.

[29] Michael J Pacione, Marc Roper, and Murray Wood. 2004. A novel software
visualisation model to support software comprehension. In Reverse Engineering,
2004. Proceedings. 11th Working Conference on. IEEE, 70–79.

[30] Thomas Panas, Thomas Epperly, Daniel Quinlan, Andreas Saebjornsen, and
Richard Vuduc. 2007. Communicating software architecture using a unified
single-view visualization. In 12th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2007). IEEE, 217–228.

[31] Jonathan Sillito, Gail C Murphy, and Kris De Volder. 2006. Questions program-
mers ask during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, 23–34.

[32] Artur Sosnówka. 2013. Test City metaphor as support for visual testcase analysis
within integration test domain. In Computer Science and Information Systems
(FedCSIS), 2013 Federated Conference on. IEEE, 1365–1370.

[33] Frank Steinbrückner. 2010. Coherent software cities. In Software Maintenance
(ICSM), 2010 IEEE International Conference on. IEEE, 1–2.

[34] Jan Waller, Christian Wulf, Florian Fittkau, Philipp Döhring, and Wilhelm Has-
selbring. 2013. Synchrovis: 3d visualization of monitoring traces in the city
metaphor for analyzing concurrency. In Software Visualization (VISSOFT), 2013
First IEEE Working Conference on. IEEE, 1–4.

[35] Richard Wettel. 2009. Visual exploration of large-scale evolving software. In
Software Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st Inter-
national Conference on. IEEE, 391–394.

[36] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
Proceedings of the 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (2007), 92–99.

[37] Richard Wettel and Michele Lanza. 2008. Code City. Proceedings of WASDeTT
2008 (1st International Workshop on Advanced Software Development Tools and
Techniques) (2008), 1–13.

[38] John Whaley. 2000. A portable sampling-based profiler for Java virtual machines.
In Proceedings of the ACM 2000 conference on Java Grande. ACM, 78–87.

https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950

	Abstract
	1 Introduction
	2 Use cases and Requirements
	3 Related Work
	3.1 ExplorViz
	3.2 ThreadCity

	4 Visualization Approach
	4.1 Data Collection
	4.2 Primary Visual Elements
	4.3 Basic Layout
	4.4 Hierarchies and Artifact Ownership
	4.5 Interactions with the Software City

	5 Evaluation
	5.1 Subjects and Context
	5.2 Interview Execution
	5.3 Results for EG1: Relevance of the Use Cases
	5.4 Results for EG2: Expressiveness
	5.5 Results for EG3: Effectiveness
	5.6 Results for EG4: Future Improvements

	6 Summary & Future Work
	Acknowledgments
	References

