
Pick Again:
Self-Adaptive Warehouse Commissioning

Oliver Meisch, Gerben Peet
Kramp BV

{oliver.meisch, gerben.peet}
@kramp.com

Stefan Rudolph, Jörg Hähner
Universität Ausgburg

{stefan.rudolph, joerg.haehner}
@informatik.uni-augsburg.de

Sebastian von Mammen
Universität Würzburg

sebastian.von.mammen
@uni-wuerzburg.de

Abstract—Picking in warehouses represents a central process
for mail order businesses. It has a major impact on the required
investments by the business and the speed of delivery to the
clients. In fact, due to the steady rise in expectations regarding
delivery times - even private households receive goods on a
same-day-delivery basis, nowadays - ongoing optimisation efforts
are rather important. They are all the more necessary, as the
economic environment changes rapidly, which includes emerging
or receding trading channels as well as the generation of vast
amounts of sales and usage data. These dynamics, in turn, equally
challenge traditional optimisation approaches and monolithic
IT systems. Therefore, in this collaborative project between
academia and industry, we have spatially re-modelled an existing
small parts store, modelled the workers, dollies, and goods, and
optimised various aspects such as the chosen routes and storage
locations of the goods. Altogether, we achieved a significant
increase in efficiency: The picking process yielded 14% more
picks per time and the walking distance was reduced by 37%.
Our agent-based, and Q-learning-based approach lends itself well
for adapting to changes in the environment as well as changes
in the clients’ shopping behaviours.

I. INTRODUCTION

Traders in the mail order business can have a major impact
on on the timespan between the reception of an order and
delivery of the goods by strategically designing the commis-
sioning process. If the shipment procedure is outsourced, the
only remaining steps for the trader are preparing the goods for
transport and passing them to the parcel service. In this rather
common case, the commissioning process becomes the most
important factor for reducing delivery times.

Nowadays, general “in-night” deliveries, i.e. deliveries on
the next day (sometimes als referred to as “over-night” deliv-
eries), are considered a high-quality asset in the business to
customer (B2C) segment. In the business to business (B2B)
segment, i.e. the trade between companies, “in-night” deliver-
ies are crucial to a company’s success—delays in delivery can
result in delays of whole supply chains.

At the same time, companies need to adapt to increasingly
dynamic environments. Especially mail order businesses are
exposed to strong seasonal variations of commissioned goods.
As goods and suppliers keep changing, the determining factors
for the commissioning work change as well. Even the pur-
chase order behaviour by the clients has changed dramatically
towards high frequencies of small orders as opposed to rare
orders of large numbers of items. In addition, the customers’

ties to individual companies have waned, which further the
importance of customer satisfaction with respect to once
business’ success.

In this paper, we present an approach to optimise the picking
process in a small parts store. In particular, we created a
spatial, agent-based model of the warehouse, implemented
various heuristic and optimal schemes for determining picking
paths, and first learned which scheme to apply in which
situation. Next, we tested different storage locations for dif-
ferent goods, and measured and optimised their impact on
the picking process; again, we resorted to the optimised path
strategy, in order to achieve a net benefit. In addition, we
learn how to optimally utilise the concept of selecting certain
commissioning items before the picking process starts. Our
optimisation efforts are concluded with a combination of all of
the mentioned approaches which yielded the highes efficiency
gains in our simulation.

The remainder of this paper is structured as follows. In the
next section, we briefly touch upon aspects of agent-based
modelling and organic computing that served as a basis for our
work. We also reference works that link these fields to supply
chain management. In Section III, we present the warehouse
and the picking process. In Section IV and systematically anal-
yse the optimisation potential and unfold the approach taken.
Concrete experimental results are presented and discussed in
Section V. We conclude with a summary and an outlook on
potential future work.

II. RELATED WORK

Multi-agent-systems (MAS) are an established field of re-
search [1]. They enable us to quickly develop and compute
multi-factorial and multi-scale models that are otherwise hard
to solve. They allow us to model, simulate and optimise com-
plex system architectures [2] or dynamic networked systems
[3]. MAS also play a central role in the field of Organic
Computing which translated features of natural systems, such
as robustness, flexibility or scalability, to technical systems [4].
In the context of technical systems, these features are referred
to as self-x properties and they included, for instance, self-
calibration, self-optimisation, self-explanation, self-healing,
and, most foundational, self-organisation [5], [6]. In [7], an
Organic Computing system for the control of traffic flow
is presented. The link from self-adapting traffic control and



traffic management systems is closely aligned with optimising
transport and logistic processes, as for instance emphasised
by [8]. More specific works that link agent-based models to
the domain of supply chain management stress how artificial
intelligence approaches can improve globally defined system
metrics [9]. It has been demonstrated on numerous occasions
how the bridge to practical implementations can be realised.
For instance, in [10], a self-controlling system is presented
in which software agents are integrated with a company’s
infrastructure and conduct transactions across several busi-
nesses. Their ability to self-control allows the system to adapt
to changing software requirements. Another example for the
rigorous integration of agent-based optimisation models can
be found in the Agent.Enterprise project [11]. Here, a set of
multi-agent systems is interlinked hierarchically to modularly
implement non-functional as well as functional aspects of a
supply chain management system.

III. MODEL

The warehouse that we modelled spans across three floors.
The floors are connected by stairs and conveyor belts that carry
reusable transport boxes for the stored goods. Each floor is
87m wide and 44m long and divided into six sections, which
we will detail in the next section. The warehouse is used
as a small parts store and workers need to pick up certain
goods/parts at fixed storage locations. During the first work
shift, from 4am to 12pm, new goods arrive at the receiving
area and are stored away. The storage logistics follow the
so-called chaotic inventory system, which does not foresee a
fixed location assignment for specific goods [12]. The reason
for this dynamic allocation of locations lies in the seasonality
of the goods that are stored in the specific warehouse that
we investigated—the commissioned parts are technological
components or systems of the agricultural industry. A certain
rule set ensures that certain parts with sufficient availability
are stored in several stations distributed across several floors.
These rules aim at balancing the workload across all workers
as well as all the materials-handling technology. During the
second shift, from 1pm to 9pm, the incoming orders are
processed by 25 to 54 workers. The orders are processed in
the order of their scheduled time of departure, which depends
on the distance to the goal region of the client.

A. Sections

All 18 sections (6 per floor) follow the same design. At
the lower end, hoisting and conveying technology is setup.
There are two stations for each conveyor belt: One for regular
orders and another one for express orders. The warehouse
management channels transport boxes to the respective stations
based on their respective priorities. There is a aisle measuring
1.2m in width that runs along the material-handling strip at
the bottom of the floor (a schematic figure is shown in Figure
1). There are 18 shelves expanding orthogonally from the aisle
across the whole warehouse. As pairs of shelves lean on each
other, there are 9 lanes (width 1.04m) protruding from the
aisle. The lanes are interrupted at the centre of the warehouse

by a second aisle that is 3.3m wide, and by another aisle
close to the upper perimeter that is 1.8m wide. The shelves
are divided into up to 31 modules, each 1.2m-wide and 30cm
deep. At the end wall, there is a module which is assigned to
the next shelf of even number.

Fig. 1. Schematic representation of a station.

2.5 workers can work at each station: Two permanent
workers and one who moves between stations in accordance
with the workload. Empirical evidence has shown that greater
numbers of workers at the stations tend to slow down the
picking processes due to congested aisles and lanes.

B. Commissioning Performance

At the company we are looking at, the commissioning
performance p is measured in number of picks n per time t
(Eqn. 1). p in combination with the amount of required human
labour determines the amount of available operating resources.
This approach to measuring commissioning performance is
common in practice and well-researched in academia [13]. p
can be used as a measure for individual workers, stations,
floors or for capturing the performance of the whole ware-
house.

p(n, t) =
n

t
(1)

We consider an hour the time measure of reference. Picks
are considered only by the number. There is no distinction,
for instance, between the volume or mass of the picked
goods, their storage height, or additionally required activities
including unwrapping or boxing of goods. These factors could
be considered to achieve a more precise calculation of the ac-
tual performance. However, in the warehouse we investigated,
the simple performance measure from Eqn. 1 represents the
established way for determining the system behaviour, which
we set out to improve.

IV. ANALYSES, REPRESENTATION & OPTIMISATION

Walking from one module to the next takes the longest
time during the commissioning process. At the same time,
we expected the greatest optimisation potential in this activity.
Therefore, we analysed the established routes chosen by the
workers and presented an according optimisation concept.



In general, there are two levers for optimisation: One can
optimise (1) the chosen route for a given set of picking
locations that need to be traversed, or (2) the arrangement of
goods to result in shorter paths (on average) to begin with.
Close proximity between all the modules that need to be
visited during one picking tour reduces the overall distance,
on average. If a worker can select a set of picking tasks, he
can minimise the distance accordingly.

A. Established Routing

For each module, a value o is determined which reflects
the distance required to take a good out of the warehouse. In
order to calculate o, one needs to consider the lane l of shelf
s, the module number m, and its face f . The face is encoded
as 1/2 for modules to the right/left in a lane, starting from
the lower aisle. The numbers of aisles, shelves, modules are
incremented from the lower aisle, which automatically yields a
greater value of o with greater indices. An according equation
of o, considering the numbering scheme for the investigated
warehouse, is provided in Eqn. 2.

o(l,m, s, f) = 105 ∗ l + 104 ∗m+ 10 ∗ s+ f (2)

In the established approach all the picks of a tour would be
communicated to the worker as a list ordered with increasing
o. Equation 2 was designed to reflect the relative distances of
a high-rise storage setup, which is why it does not seamlessly
translate to the investigated small parts store. As one can see
in Figure 2, it does not, for instance, account for aisles at
the centre or back of the warehouse, which make it possible
to switch from one lane to another without returning to the
starting aisle.

Fig. 2. Originally assumed layout of the warehouse.

This originally assumed layout does not leave much leeway
for optimisation: One has to enter all the lanes with prospective
picks and follow them until the last good of the respective lane
has been picked. However, this approach and its associated o
calculation are not applicable to the actual warehouse layout,
which results in unnecessarily longer paths with increasing
numbers of picks. Therefore, a first optimisation step in the
scope of our work, was to identify better or optimal routes.

B. Established Storage Locations

As we mentioned above, the investigated warehouse im-
plements a chaotic inventory system, which allows to assign
goods to changing locations in order to compensate for sea-
sonal fluctuations. Items that might be in high demand during
the summer time might be stored in up to 40 storage units
and occupy only one during winter. An important reason to
spread articles across several storage units lies in the width of
the lanes which limits the number of workers at one station
to 2.5. In order to compensate for this constraint, it is a
goal to maintain approximately the same workload at all the
stations and to make a specific part commissionable from
at least two stations. This is currently achieved by evenly
distributing the goods across all stations and across the whole
area. This distribution, in turn, results in picking tours covering
the whole area throughout a single shift. Figure 3 visualises
the access frequency (higher frequency d̃arker hue) across one
floor over the course of one shift. One clearly sees that the
most frequently picked modules are scattered across the whole
floor.

Fig. 3. Distribution of picks over the course of one shift (darker red hue
means higher frequency).

In order to visualise the scattering of picks that result from
this distribution for a single tour, Figure 4 exemplarily high-
lights all the visited modules of one tour in blue, emphasising
the most frequented module in red. Each shelve was visited
at least once.

C. Warehouse Representation

As the workers are always assigned to one station or
floor, we only require a two-dimensional representation of the
warehouse. Next, we assumed 90o angles between construction
elements and furniture to facilitate mapping the warehouse to
Cartesian coordinates and to simplify the path calculations.
Based on the width of the smallest infrastructural element, the
module, one unit in our coordinate system translates to 1.2m.

D. Optimisation of Routes

In order to determine optimal routes, we rely on two
algorithms. First, we calculate the shortest distances between



Fig. 4. Modules picked from over the course of one tour (in blue). In red:
The module with the highest total access frequency.

all pairs of locations that we need to visit by means of the A*
algorithm [14]. Second, we determine the best possible route
by means of a branch-and-bound approach [15]. It starts with
a nearest neighbour heuristic and determines the lower bounds
a 1-trees [16]in accordance with Prim’s algorithm [17].

E. Machine Learning Approach

We apply Q-learning [18] to optimise our simulated agents’
behaviours. The high degree of similarity between the situa-
tions faced by the agents allows this algorithm to converge to
optimal decisions in static environments. At the same time, its
online capability, i.e. its realisation of iterative improvement,
prepares the stage for a self-adaptive system that can handle
variations of client habits and market fluctuations at different
time scales.

However, for our early results, we distinguished between a
learning and an application phase in order to directly quantify
the learning effect over time. Learning rate α and discount
factor γ have a major impact on the learning speed and
accuracy. During the learning phases, we started out with a
a learning rate α = 1, which means that only new information
is considered, which is continuously reduced to α = 0.1,
which means new information only marginally impacts the
agents’ behaviour. We implemented a constant discount factor
of γ = 0.9, which accounts for preceding actions’ impact on
a result. Instead of selecting the action with the highest Q-
value, we apply roulette wheel selection and select an action
with a probability proportional to its contribution to the fitness
value in a given state [19]. We calculate this probability p for
a specific action a by means of Equation 3, whereas fa is the
Q-value or fitness of a and N is the numbers of all possible
actions in a given state.

pa = fa/
N∑
j=1

fj (3)

V. EXPERIMENTS & RESULTS

The calibration of the agent-based model is an important
first step. Our goal is the simulation of a regular work day
that matches empirical data, without any optimisations applied.
Such parameterised and validated model ensures that our
simulation results be translated to real-world scenarios and it
provides a basis for comparisons of our optimisation efforts.

We detail our empirical methodology and its application
for calibrating our simulation model in the next section.
Afterwards, we step through the individual optimisation exper-
iments, explain their rationale, and present and discuss their
results.

A. Simulating a Regular Work Day

Our empirical data is based on sampling picking processes
over a period of one month (June 2016). We logged the raw
picking information, providing information on the good, the
time, and location of a pick. In addition, we calculated and
logged inferred values such as the walked distance, the total
work time, and the performance measure p at a granularity
of one hour. In order to validate our trained model, we
considered the first three weeks of the month for learning and
the remaining week for validation only.

Simulating a regular work day, our trained model yielded
a performance of 57.45 picks per hour. In total, the workers
walked 480.5km and worked for 248 hours and 14 minutes.
These values closely correspond with our empirical data.

B. Optimal Routes

As explained above, the original routing method in place
was misguided. Based on our model that also considers the
centre and back aisles as well as rather accurate spatial
dimensions, we ran A* in combination with a branch-and-
bound approach to calculate shortest paths. With this first
change to the original model, we achieved the performance
increases captured in Table I. The total distance walked per
day dropped by 29%, which is a significant improvement.
As a result, the commissioning performance p rose by 11%.
The marginal drop in the average number of picks per tour
may have resulted from the limited amount of transport boxes
available at the station—in analogy with the current situation
in the warehouse.

TABLE I
SIMULATION RESULTS: INTRODUCING OPTIMAL ROUTES

Regular
Day

Optimised
Routes ∆

Performance p 57,18 63,03 + 10,83%
Total distance (km) 480,451 368,353 - 29,34%
Scattering of picks 12,21 12,47 + 2,13%
Avg. #pickstour 4,08 4,02 - 1,47%
Total work time (h) 248:14 221:07 - 10,92%

C. Learning the Routing Selection

Following a simple heuristic for choosing the next pick
location provides the quickest start of the tour, whereas



any thoughts into planning the tour systematically requires
additional computational burden and, thereby, introduces an
additional delay. While optimal, computing the shortest paths
for each pair of picks is costly, and so is the systematic search
for their concatenation into a minimal route. Therefore, in this
second optimisation step, we train our agent-based model to
select one of several routing options: (1) Follow the established
heuristic, (2) greedily perform a nearest neighbour search, (3)
rely on A* and find a good route using branch-and-bound,
(4) rely on A* and perform an exhaustive search to find the
optimal route. If a route needs to consider only very few
stops, an exhaustive search might still be more efficient overall,
whereas finding the optimal route for many stops might take
longer than the gained advantage from the reduction in the
walking distance.

The behaviour that was learned is summarised in Table
II: Depending on the number of picks, a certain routing was
selected. The established, naive model is only good for routes
with one pick - as it provides direct access and does not require
any calculations, not even a nearest neighbour comparison.
This comparision yields an optimal result when only two picks
need to be ordered, which renders it the preference in this case.
Between three to ten picks, branch-and-bound on pairs of picks
and their shortest paths is the general method of choice. But
in one case, when there are exactly four picks, an exhaustive
search turns out to be more efficient overall than the branch-
and-bound approach. Yet, we want to point out that these
preferences are the result of a probabilistic learning algorithm
and should not be considered in absolute terms. Any number
of picks greater than ten renders nearest neighbour search the
preferred method.

TABLE II
LEARNED ROUTING SELECTION

# Picks Route Planning Approach
1 Established Model
2 Nearest Neighbour
3 Branch-and-Bound
4 Exhaustive Search
5 to 10 Branch-and-Bound
> 11 Nearest Neighbour

Learning the above route planning preferences yielded
mixed results, as can be seen in Table III: Most importantly,
the commissioning performance p is further increased, if only
by 1.03%. The total work time is reduced by a negligibly
small amount, and the picks are slightly less scattered across
the section/floor. However, at the same time, the total distance
increased as much as the performance did and the average
number of picks of a tour slightly decreased as well.

D. Introducing an ABC Inventory Control System

The next optimisation step foresees the allotment of storage
locations with respect to the accessing frequency of different
goods. To recall, the established approach was to evenly
distribute the goods. While the even distribution is maintained,
we introduce the ABC inventory control system. This means

TABLE III
SIMULATION RESULTS: LEARNING ROUTING SELECTION

Optimised
Routes Routing Selection ∆

Performance p 63,06 63,73 + 1,03%
Total distance (km) 339,493 342,996 + 1,03%
Scattering of picks 12,47 12,09 - 3,05%
Avg. #pickstour 4,02 4,00 - 3,05%
Total work time (h) 221:07 220:38 - 0,22%

that at each station, goods and storage modules are assigned to
either of three classes based on their access frequency, whereas
A-class items are closest to the station and C-class items
furthest. When comparing the results to a regular work day
(Table IV), we do not see any improvements. On the contrary,
the total distance increases by 6% and the commissioning
performance drops by 2%. In addition, scattering of picks
as well as the work time are increased. Clearly, one reason
for the degradation in performance lies in the fact that the
established, naively guided routes are closely intertwined with
the bias-free, even distribution of goods.

TABLE IV
SIMULATION RESULTS: INTRODUCTION OF AN ABC SYSTEM

Regular
Day ABC System ∆

Performance p 57,45 56,09 - 2,37%
Total distance (km) 480,451 509,354 + 6,02%
Scattering of picks 12,21 13,11 + 7,37%
Avg. #pickstour 4,13 4,09 - 0,97%
Total work time (h) 248:14 253:50 + 0,07%

Analysing the distribution of picks across the station, one
recognises that modules close to the lower aisle are accessed
much more frequently than those further away. This is exactly
the ABC system’s expected effect. Figure 5 illustrates this
effect considering the same period of time and the same station
as the one analysed in Section IV-B. Considering that the
expected qualitative result has been achieved, we decided to
also test this approach from another angle.

Fig. 5. Picks with the introduction of the ABC system.



E. ABC Control System and Optimal Routes
As the introduction of ABC classes in combination with the

established, naive routing mechanism did not yield desirable
results, we investigated next, whether an ABC system can
be advantageous, if optimal routing is adopted as well. We
compare the results with the optimal routing approach, as
we have previously witnessed that the deployment of optimal
routing yields a general improvement, even without adaptation
of article and module locations. As one can see in Table
V, introducing the ABC system does indeed yield another
improvement, if the routing scheme is adapted. The total
distance is reduced by 3%, and the performance p is increased
by 0.4%. But it also results in a slightly more scattered
distribution of goods.

TABLE V
SIMULATION RESULTS: ABC AND OPTIMISED ROUTES

Optimised
Routes

ABC &
Optimised Routes ∆

Performance p 63,67 63,89 + 0,35%
Total distance (km) 339,493 330,782 - 2,57%
Scattering of picks 12,47 13,05 + 0,35%
Avg. #pickstour 4,02 4,02 + 0,00%
Total work time (h) 221:07 220:14 - 0,40%

F. Learning to Leave Transport Boxes
As non of the reported approaches could reduce the scatter-

ing of picks, we decided on testing another distinct approach.
Instead of trying to achieve improvements while touring, we
now consider, whether to accept a commission with only one
or with several picks, or whether individual picking tasks
should be left behind at the station. The concrete approach
foresees that a worker picks up the first transport box and
decides which of its successors he wants to skip or add to
his tour. We first simulated this new approach extending the
regular work day model. As one can see in Table VI, this
new approach achieves the desired results. Scattering of picks
drops by 55%. At the same time, the total distance is reduced
and the commissioning performance p is increased by 2%.

TABLE VI
SIMULATION RESULTS: LEARNING TO LEAVE TRANSPORT BOXES

Regular
Day Leaving Boxes ∆

Performance p 57,45 58,63 + 2,05%
Total distance (km) 480,451 466,601 - 2,88%
Scattering of picks 12,21 5,55 - 54,55%
Avg. #pickstour 4,13 3,92 - 5,08%
Total work time (h) 248:14 246:19 + 0,77%

In order to visualise the newly achieved distribution of
picks, we take up the illustration scheme shown in Section
IV-B. In Figure 6, the module with the highest access fre-
quencies is depicted in red, whereas all the other modules
that have been visited are shown in blue. One can see that
the picks are not scattered across the whole area any longer.
Rather, mostly the modules around the red one in the back are
visited, whereas the front area is only visited as an exception.

Fig. 6. Scattering of picks of a tour after learning to leave transport boxes.

G. Learning to Leave Transport Boxes and Optimal Routes

As we have shown that leaving transport boxes at the station
can increase the efficiency and decrease the distribution of
picks in the previous section, we now extend it by and compare
it to the dynamic optimisation of routes. Table VII reveals that
learning which commissioning tasks should be processed in
combination further improves on the optimal routing selection
scheme. The total distance could be reduced by another 8%.
The commissioning performance p increased by 3%, or two
picks per hour. At the same time, the scattering of picks
was reduced by 45%, which led to an overall decrease of
work time by 5 hours. The average number of picks per tour
also decreased, which might be a result from the increased
efficiency.

TABLE VII
SIMULATION RESULTS: LEARNING TO LEAVE TRANSPORT BOXES AND

OPTIMAL ROUTES

Optimised
Routes Leaving Boxes ∆

Performance p 63,89 65,72 + 2,86%
Total distance (km) 330,782 305,027 - 7,79%
Scattering of picks 13,05 7,16 - 45,13%
Avg. #pickstour 4,02 3,89 - 3,23%
Total work time (h) 220:14 215:33 - 2,13%

H. Combined Benefit of all Advantageous Approaches

For the conclusion of our empirical studies, we combined
all the aforementioned, advantageous approaches and analysed
how well they played together. In particular, this last model
includes the application of the ABC inventory system, learning
the routing scheme, and learning which transport boxes should
be combined. Again, the results of this combined approach
to self-adaptive warehouse optimisation are compared to the
basic regular work day model. Table VIII summarises the re-
sults. In combination, our optimisation steps yield a significant
increase in efficiency. The commissioning performance p is
increased by 14%, or eight picks per hour. The total distance
is reduced by 37%, or 177km per day and the scattering of



picks is diminished by 57%. These improvements lead to a
reduction of the total work time by 13%, or 32 man-hours
per day. The average number of picks per tour are reduced by
21% as well, which may, again, be owed to lack of storage
boxes at the station. These numbers emphasise that especially
the interplay of the proposed optimisation approaches leads to
significant efficiency improvements.

TABLE VIII
SIMULATION RESULTS: BENEFIT OF COMBINED APPROACH

Regular
Day

Combined
Approach ∆

Performance p 57,45 65,54 + 14,08%
Total distance (km) 480,541 303,043 - 36,94%
Scattering of picks 12,21 5,29 - 56,67%
Avg. #pickstour 4,13 3,28 - 20,58%
Total work time (h) 248:14 216:11 - 12,91%

VI. SUMMARY & FUTURE WORK

For traders in the mail order business the commissioning
process is of seminal importance. Often, it provides them the
greatest lever for processing an order with maximal costumer
satisfaction in mind. Therefore, it is decisive to analyse,
fully understand and continuously evolve this process. In this
work, we have conducted research to deploy a combination
of optimisation and learning techniques to result in dynamic,
self-adaptive warehouse commissioning processes. We based
our representation, simulation, and optimisation on empirically
captured model data. Despite its very concrete application,
our approach can be adapted to suit other warehouse sit-
uations. Most importantly, the dynamics that are inherent
in the trading business, e.g. strong variations in customer
behaviour, seasonal changes, or changes in product availability,
subcontractor selection, etc. render it necessary that any opti-
misation approaches can entertain self-adaptation to changing
environments. Aiming at high commissioning performance,
our approach can self-adapt accordingly by means of an agent-
based, reinforcement learning scheme in place.

In particular, based on the empirical model we increased
the degree of freedom of worker agents step by step. We
subjected their behavioural freedom to reinforcement learning
and compared the outcome to the model results of lesser
complexity, starting with the un-optimised status quo. Each
extension brought about some improvements, with the final
combination of all aspects resulting in performance gains of
14%. The individual measures towards this success included
(1) the introduction of shortest path calculations for pairs of
picks, (2) planning picking routes based on heuristics, heuristic
search or exhaustive search, (3) learning to choose the right
planning approach automatically, (4) introduction of ABC
classes for goods and modules, and (5) strategic skipping of
individual picking jobs to arrive at lean picking routes.

The presented model has the ability to self-adapt. Yet, it
would be interesting to investigate the extent and the speed of
environmental dynamics it can cope with. A rough estimate
for according boundaries could potentially be inferred just by

theoretical analysis of the model. Next, comprehensive experi-
ments for a sensitivity analysis could be conducted. In addition
to this theoretical work, conceptual work would have to follow
suit that sheds light on the medium and long-term integration
of such a self-adaptive system in the warehouse ecosystem.
We have already introduced some of the outlined aspects into
the investigated warehouse. Yet, the tandem of self-adaptation
and feedback, and respectively, goal specification, would have
to be concretely designed. The interface of the commissioning
system generally requires some additional efforts. Currently,
the workers are supported by a hand-held device. Possibly,
this could be further supported by smart, wireless in-ear
headphones, which could help navigation without loosing
visual focus. In this context, precise indoor location could
become a major asset, also, for instance, for detecting jammed
lanes.
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