
A Gamification Concept for Teaching Swarm Robotics

Heiko Hamann
Institute of Computer Engineering

University of Lübeck
Lübeck, Germany

hamann@iti.uni-luebeck.de

Carlo Pinciroli
Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, USA

cpinciroli@wpi.edu

Sebastian von Mammen
Games Engineering
Universität Würzburg
Würzburg, Germany

sebastian.von.mammen@uni-wuerzburg.de

Abstract—Over the past few years, robots have found their way
to the consumer market. With the rise of ubiquitous digitization,
the transformative potential of robotics is immense. Yet, it is
important to educate a new generation of robotics engineers
on researching and engineering mobile robots and also multi-
robot systems. Often, students’ great intrinsic motivation to
learn about this field is quickly shattered due to its inherent
multifaceted challenges. These reach from the need to program
robot individuals and to concert collectives to mastering the
imperfections of robotics hardware. Accordingly, we present
an approach to teaching robotics harnessing the means of
engagement and motivation of gamification. We present a concept
that builds on the tandem of simulation and hardware trials
embedded into a social competitive serious game context.

Index Terms—robotics, mobile robotics, swarm robotics, gam-
ification, game, serious game, education

I. INTRODUCTION

With the dawn of robotics flooding the consumer market, we
have to find the means to control and direct large numbers of
robots [1]. The obvious idea of remotely controlling a mobile
unit is quickly challenged when considering many rather
than one. Future robots need to exhibit increasing degrees of
autonomy. Even more, given their tight integration into our
society, robots need to cooperate with each other and ourselves
to achieve desirable outcomes. The field of swarm robotics
investigates new approaches—in software and hardware—to
design and harness the powers of large numbers of autonomous
robots that achieve goals unattainable by a single unit [2].

To involve students into the young, multifaceted discipline
of swarm robotics, we propose to utilize the means of gam-
ification and serious games. Gamification means applying
playful game elements, for instance badges rewarded to the
player, to otherwise non-playful procedures, thus rendering
them more attractive [3]. Serious games are understood as
“games with a purpose beyond entertainment” [4]. We propose
(1) the gamification of teaching swarm robotics to first-year
undergraduate students in computer science, and (2) concrete
game elements and serious game mechanics to foster a set
of seminal learning targets in the domain of swarm robotics
based on established learning theories. Next, we summarize
related work in education and serious games. In Sec. III, we
present the state of the art in teaching robotics. Based on
our experience, we detail the challenges in teaching swarm
robotics in Sec. IV and outline our proposal for a gamified
curriculum in Sec. V. We outline which frameworks could be
used to implement our concept.

II. RELATED WORK

Learning is an innate and rewarding human behavior. Yet,
learning can also be a challenge, even when great efforts are
invested into effective teaching. Ideally, students are highly
motivated, and repeated opportunities for training are provided
that give immediate feedback and which also draw from
the students’ pre-existing knowledge [5]. Video games, if
realized well, are especially suited to address these ideal
requirements [6]: They are captivating, immerse the player into
a constant flow of (repeated) challenges, without underwhelm-
ingly little variation or too difficult tasks leading to frustration.
They communicate clear goals and provide immediate and
meaningful feedback. The insight that games have meaning
“beyond entertainment” [4] found its way into video games in
the 1970s and coined the term “serious games” in the 2000s.

Teaching swarm robotics involves both declarative knowl-
edge such as facts, concepts and algorithms, and procedural
knowledge such as soldering on a robot’s circuit board [7].
Since acquiring both types of knowledge may pose equally
great challenges and since both aspects need to be properly
addressed to succeed, students may be overwhelmed and
frustrated. The gap between theory and practice aggravates the
situation further, since exhaustive search for errors also needs
to consider (unreproducibly) failing hardware components.

Our proposed concept takes these complexities into account
and addresses them by following educational approaches,
such as the ARCS (Attention, Relevance, Confidence, Sat-
isfaction) model [8]. Founded on expectancy-value theory it
revolves around the value the student gains from following
through a given learning exercise. The student’s attention
has to be gained, maintained and directed. The relevance
has to be clear in terms of contents and achievements. The
student’s confidence has to grow by laying out reachable, clear
learning targets. The students need to feel satisfaction to be
encouraged to follow through and discover by themselves.
These requirements coincide with the ingredients of “fun”
play experiences—relatedness, competence, and autonomy [9].
Aligned with the learning targets and the audience, we propose
to implement this approach by translating the required learn-
ing mechanisms to game mechanics, thereby following the
according LM-GM (Learning Mechanics-Game Mechanics)
Model [10]. For example, short tutorial scenes while playing
a game (cascading tutorials as GM) can provide instructional
guidance (LM).

III. STATE OF THE ART IN TEACHING ROBOTICS

We briefly summarize the state of the art in teaching robotics
from the perspective of mobile and swarm robotics, that is,
where large numbers of potentially simple robots interact to
accomplish tasks at the collective level. Training programs
in robotics typically focus on the design and implementation
of robot controllers or the integrative application of robotics
to a specific problem, often in a competitive context as to
propel the students’ engagement. While the latter may require
customized hardware designs, there is a selection of robot
designs available apt for teaching robotics.

A. Robots for Education

Most small mobile robots used in education look similar
because an efficient and minimal design is a differential drive
combined with proximity sensors. A popular example for
teaching swarm robotics across all ages and learning levels
is Thymio II [11], a simple, small robot with differential
drive, infrared sensors, and some potential for extensions. The
strength of Thymio is the considerable software framework
consisting of a visual programming language for children of
age six and older, Blockly1 (coding with blocks) for age nine
and older, and text programming based on Aseba2 (tool set
for easy programming of robots) for age twelve and older.
Another example of a similar design is the e-puck robot.
Moradi and Bahri [12] propose to teach robotics in a hands-
on approach with LEGO and find an improved understanding
of algorithms and coding methods in students. Despite this
variety, a standard course on mobile robotics for Bachelor
students typically makes use of a mobile robot in standard
differential drive design. In courses on swarm robotics, size
and prize of the robot need to be minimized to allow for large
robot groups despite limited resources. Again, Thymio is an
option here but also the Kilobot [13], which is a small swarm
robot moving by slip-and-stick motion of legs and with limited
capabilities. Most of these simple robots have relatively high
robustness and reliability, which helps to limit frustration in
students due to hardware failures.

B. Robot Simulators and Tools for Education

1) Programming Languages: To gamify swarm robotics,
we have to consider students with different backgrounds. Often
students will have had little to no exposure to programming;
in other cases, they will have prior programming experience
and will seek more complex challenges. An effective software
architecture must thus encompass several layers and interfaces,
that gradually include more detail as the complexity of the
tasks to accomplish increases.

Behavioral specification languages can be categorized into
block-based, text-based, and hybrid [14]. Block-based edu-
cational development environments such as Visual Robotics
Platform, based on the well-known Scratch programming
language3, smooth the learning curve for beginners. NetLogo

1https://developers.google.com/blockly/
2https://www.thymio.org/en:asebausermanual
3http://visualrobotics.org/, https://scratch.mit.edu/

is a widely used text-based educational tool that simplifies the
definition of multi-agent behaviors for novice users, although
not specifically for robotics applications. Languages such as
Python and Lua4 are ideal for students with prior exposure
to programming. Experience in robotic education revealed
that robotic middleware, such as Robot Operating System
(ROS) [15], can sometimes be inadequate for beginners, due
to the large amount of concepts to absorb.

An orthogonal aspect in gamified software environments
for swarm robotics is the ease of transfering executable code
developed in simulation onto the real robots. This is important
in swarm robotics, because the students must manage multiple
robots. Currently, the only robotics platform that enables this
kind of operation seamlessly is the Kilobot, whose program-
ming API is based on C.

2) Robot Simulation Environments: Several robot simula-
tors are currently available for robotic education. Among the
most widespread, we mention Gazebo, V-REP, and Webots5.
These simulators offer accurate 3D simulations and integration
with a wide set of software tools and languages. Gazebo’s
design is intertwined with ROS and offers bindings to several
languages, notably Python, and robotic platforms, such as
the TurtleBot. Gazebo is arguably the most used tool for
robotics education. Robotics educational curricula have also
been proposed that use the e-puck along with Webots [16],
and the Khepera IV robot along with V-REP [17]. In all of
the above cases, the robotics curricula focus on single-robot
navigation rather than on swarm robotics.

C. Robot Competitions

There is a tradition of competitions in robotics. Hence, there
is potential for using them in education. Competitions can
be used to motivate students [18]. A drawback is that most
of them are focused on research challenges that are beyond
what a student team may be able to achieve. Well-known
and popular competitions are, for example, RoboCup and the
DARPA challenge6. Both are characterized by high costs and
extreme requirements for teams to enter the competition. Com-
petitions that are easier to enter by amateurs are, for example,
the international robotic sailing competition (SailBot)7 and a
various number of robot-sumo competitions (robots try to push
each other out of an arena). Sumo competitions are often
open for teams of students (e.g., Sumobot competition by
FabLab Lübeck8). Other examples of competitions organized
for school and university students are the VEX robotics
competition and the FIRST Robotics Competition9. Grandi et
al. [19] propose to use LEGO Mindstorms to teach industrial
robotics in competitions between teams. An approach combin-
ing robotics and gamification is reported by Rursch et al. [20].

4https://www.python.org, https://www.lua.org
5http://gazebosim.org/, http://www.coppeliarobotics.com/,

https://www.cyberbotics.com/
6http://www.robocup.org, http://archive.darpa.mil/grandchallenge/
7https://www.sailbot.org/
8https://sumobot.fablab-luebeck.de
9https://www.vexrobotics.com/competition,

https://www.firstinspires.org/robotics/frc

https://developers.google.com/blockly/
https://www.thymio.org/en:asebausermanual
http://visualrobotics.org/
https://scratch.mit.edu/
https://www.python.org
https://www.lua.org
http://gazebosim.org/
http://www.coppeliarobotics.com/
https://www.cyberbotics.com/
http://www.robocup.org
http://archive.darpa.mil/grandchallenge/
https://www.sailbot.org/
https://sumobot.fablab-luebeck.de
https://www.vexrobotics.com/competition
https://www.firstinspires.org/robotics/frc

Robot competitions that explicitly focus on aspects of swarm
robotics are rare but one example is NASA Swarmathon10 with
focus on space exploration [21]. In hardware three robots need
to be coordinated and in simulation also bigger swarm sizes
are possible.

IV. CHALLENGES

We teach robotics in a hands-on style in several different
courses using different platforms. Besides a simple self-built
differential drive robot we also use Thymio and the Kilo-
bot [13]. We use the self-built robot in a course for first
term Bachelor students in combination with a simple graphical
editor of finite state machines to navigate mazes. The Thymio
is used with the Lua script environment in a Master-level
course. In a more advanced course and in student research
projects, we use the Thymio with an extended programming
environment based on a RaspberryPi extension board and
the Python programming language. The Kilobot is used in a
course that is focused on network aspects rather than an actual
introduction to robotics.

We have observed that (1) challenges in hardware design
and maintenance are readily accepted by students, whereas
(2) they are less willing to invest time and effort into learning
the use of simulators. Our intuition is that this bias towards
hardware stems from the rare opportunity of working with
hardware, the excitement about the robots themselves, as
well as generally high expectations in terms of software
accessibility known from video games.

Despite their initial excitement, students usually get frus-
trated once they realize that the robot platforms are not
perfectly robust. Due to wear or incorrect handling, sensors fail
or programs cannot be uploaded to the robot. Such obstacles
add to the already challenging task of programming a specific
robot controller, especially since the debugging process needs
to consider errors due to hardware (“the robot’s fault”) and
errors due to software (“the student’s fault”).

A particular challenge of teaching swarm robotics is the
collective aspect. When programming a single robot the focus
is clear. A student can virtually take the perspective of the
robot and think of appropriate behaviors in given situations.
In a robot swarm the task is typically defined on the global
level, that is the swarm level. Even in research the problem of
switching between the individual and the swarm perspective
is well-known and challenging [22]. How to program a swarm
is, hence, ambiguous and can also lead to frustration.

Even for a fixed robot controller there are many design
challenges left for a swarm robotics engineer. To test scal-
ability and robustness of a proposed robot controller, properly
designed robot experiments must be conducted in simulation
and/or in hardware. Depending on the application, different
types of robustness may be relevant. Robots may have to
rely on noisy sensor measurements and tests are required to
check the robustness of the approach to increased noise levels.
Robots may break or partially fail, which requires robustness

10http://nasaswarmathon.com/

against dynamic robot group sizes and, for example, faulty
messaging between robots. Bottlenecks may emerge due to the
effective communication bandwidth or other limited resources
such as available space or free memory.

In summary, next to teaching about robotic hardware and
its use, programming controllers, designing swarm controllers
for desired collective behaviors, the complementary goals that
our concept sets out to achieve are as follows. (1) Utilize the
hardware appeal to engage and motivate students; (2) Render
simulation and other software accessible. (3) Support the
distinction between software and hardware errors.

V. PROPOSED CONCEPT

In this section, we propose a concept to flesh out a viable
swarm robotics curriculum based on gamification.

A. Bridging the Reality Gap

Both the strong motivational component and the learning
targets shaped the idea to teach robotics in an integrative
fashion, that is, to develop software and hardware conjointly
and incrementally. Both hardware design and robot controllers
need to be reflected in a simulation environment. Ideally, there
should be only one robot controller program that runs both
the simulation and the actual robot. Specifying the controller
programs can be realized in text-based code or in visual
scripting environments. In analogy, specifying the hardware
model can be realized in text-based blueprint specifications
or in spatial visual editors (2D or 3D). For both modeling
aspects and both text-based and visual approaches, numerous
prototypes have been published.

We instruct the students to engage proactively in honing
their models, but we also ensure that their hardware implemen-
tations do not diverge from their simulation models. Hence, in
addition to promoting modeling, we also provide a checkpoint
infrastructure to ensure hardware and software are aligned.
We define milestones and show differences to the students’
code and design but also visualize the simulated results. By
retracing the individual steps of a provided sample solution,
students could always check their progress and identify poten-
tial problems early on. However, depending on their level of
expertise, they might want to leap ahead to major milestones
that are defined as mandatory by the instructors. The other
way around, in case the students explore novel designs and a
sample solution is not provided, they can visually debug their
design decisions by frequently running the simulation.

B. Learning Phases

Students set out to design fully working prototype robots
and models from the start but increase their functionality and
complexity incrementally, step by step. We are also aware
that focusing on programming or on hardware design can be
challenging. We propose to split the curriculum into learning
phases that always yield a working prototype but may focus
on different concrete learning goals. We have identified the
following learning phases that we want to incorporate into
our curriculum.

http://nasaswarmathon.com/

1) Familiarizing oneself with a basic robotic system, in-
cluding the workings and the interrelationship between
sensors, actuators and the robot controller.

2) Designing and implementing a robot controller to realize
a navigation task of a single mobile robot.

3) Designing and implementing a robot controller to estab-
lish collective movement patterns.

4) Optimizing control parameters to improve the achieve-
ment of high-level goals.

C. Bridging with Badges, Driving with Competition

To address our challenges supported by educational theo-
ries, we break the four learning phases into subgoals. Their
individual and overall achievements are translated into game
elements: Players accumulate points for task completion, lead-
ing to game scores giving credit to a player’s competence
and providing a performance measure. Competition spurs the
social relatedness of players. The same is true for badges that
are earned when achieving goals. The advantage of badges
is that they can convey clear semantics about the concrete
achievements (e.g., “Highway of Hell Finalist”) and they might
be collected to unlock new challenges in the game. Of course,
scores and badges can enrich a game side by side.

In the first learning phase, the player might score when
successfully activating the robot’s differential drive to move
forward, to take a turn at the right moment etc. Reaching the
goal area is rewarded with a badge. Next to simple activation
tasks, simple controllers could be implemented in this phase
already that realize simple reactive behaviors and adapt to
environmental features. Earning badges unlocks the ability to
load the implemented controller to the actual hardware and
try it out in real life. Although technically viable, feeding
meaningful performance measured from reality back into the
simulation requires a lot of ingenuity, including sensor cali-
bration, possibly tracking, and interpreting the data. However,
the real-world system could systematically compete against
other students’ or student teams’ systems. Say, a race between
two units could take place or the students measure time to
completion. Due to its social significance, such a real-world
competition should be the primary driver for the curriculum,
whereas the scores and badges earned in the simulation would
also count towards the students’ standing.

The tandem of simulation and real-world deployment would
be repeated throughout all learning phases. Whereas simula-
tion becomes increasingly important with the complexity of
the robots’ tasks, up to the point where simulation results feed
into optimization routines to address the great challenge of
automatic configuration of swarm robotic systems [23].

D. Non-linear Gameplay

Autonomy, that is, the freedom to explore on one’s own
agenda, is important for establishing fun as well. Based
on the setup outlined above, there are several ways, and
the students/players could set their own goals. For instance,
instead of the initial idea of accumulating scores as a sec-
ondary means of competitive evaluation, the players could

be rewarded with a virtual currency that they can spend on
additional sensors or actuators or for tuning the ones they
already own—in simulation as well as in reality. An according
virtual robot shop could offer just the limited assortment the
instructor can provide in reality and offer tuning opportunities
that are possible with the available (hardware) parts. As a
result, the students could immediately explore the impact of
their engineering choices and experience an immediate benefit
from the virtual challenges (beyond a working robot design
and controller). Offered goods could also include additional
robots, the available memory for executing a program on a
robot platform, mathematical functions as well as high-level
methods that allow the easy specification of certain algorithmic
behaviors, or optimizers that can aptly configure robots for a
given task and simulation model.

The idea of non-linear play could be taken further still
by allowing the students to choose which challenges they
want to accept in the simulator and in which order. For
instance, they could aim for high-speed racing and pre-script
the avoidance of slalom poles and quickly improve their
robot’s motor and steering abilities or they could give sensory
challenges greater priority to increase the robot’s autonomy for
complex challenges with great rewards that include dynamic
environments. These strategic decisions would have a great
impact on the students’ successes as the overall competition
typically runs for a limited period of time.

E. Final Grounds with Augmented Reality

At the end of the fourth learning phase, the students would
have robot collectives that are customized and optimized to
fulfill specific tasks and an infrastructure to adapt their global
behaviors to new challenges. They have proven themselves
multiple times and the competition could be concluded at this
point. However, carrying out one final important competition
would encourage all teams to engage until the end of the
curriculum. Also, the final competition might yet again surpass
the motivation of previous achievements.

We propose a battle royale scenario adapted for swarms,
where all the students enter their robot swarms in one final
competition and compete against all the others. Clearly, an
according battle stage would need to be provided as well as
the means of the robots to directly impact each other apart
from blocking each others’ paths. To this end, we propose to
extend the envisioned software/hardware platform by means of
player-induced manipulation. For example, the player should
be allowed to add robotic units (friends and foes alike) to
the battle ground to ensure or challenge the robustness of
one’s own swarm or an opponent’s swarm, respectively. In
addition, it should be possible to change individual robots’
behaviors based on successful enemy attacks, that is, with
a certain probability close-by adversary robots might want
to change a robot’s configuration. With a rising number of
attackers, the odds increase that an attack will succeed and the
enemy’s swarm would have to prove to be robust (cf. [24],
[25]). For changing a swarm member’s configuration, the
robot’s controller should be updated in real-time. An according

interface for the player should be offered—the development
environment would augment the robots’ environment with
additional information.

VI. TOOL SET: ROBOTS IN HARDWARE AND SOFTWARE
FOR ROBOTS

Providing a software-to-hardware workflow is a practical
challenge for the envisioned gamified teaching concept. This
section proposes a concrete path to its realization.

A. Robot Hardware

Our experience shows that most students are highly mo-
tivated once the task is embedded into a robot challenge.
Complex tasks that may range from designing the robot from
scratch to controlling it, are then often accepted and success-
fully completed. Possibly the above mentioned challenge of
distinguishing faults that were caused by the students in their
attempt to solve the given task from those caused by faulty
hardware is resolved because a properly functioning hardware
is part of the students’ own responsibility. The students’ have
to deliver a complete and functional package of robot hardware
and robot software. Hence, the challenging task combined
with clearly defined responsibilities has a motivating effect
on students once they are properly supervised.

We have experience with the above mentioned Sumobot
competition by FabLab Lübeck. A team of two students
supervised by a PhD student had to design a differentially
driven, remote-controlled robot for the Sumobot competition.
The students get a clear feedback about their performance via
the competition and they are immediately motivated to review
and rethink their design and to discuss potential improvements.
Arguably this approach can be seen as a way to challenge and
encourage high performers.

B. Robot Software

We propose to use the recently introduced Buzz program-
ming language [26]. The main driver in the design of Buzz is to
expose to the developer a small, but powerful set of primitives
that enables the expression of complex swarm algorithms.

Buzz is also designed as an extension language. Rather
than replacing the software stack present on a robot, Buzz
is conceived to integrate with it seamlessly, exposing only the
relevant aspects of a robot API. This design choice makes it
possible to use Buzz with virtually any type of robot, and to
add application-specific primitives to the language. The run-
time platform is decentralized by design, and offers natively
several mechanisms for coordination and communication that
work transparently to the developer.

The robots can be heterogeneous in their capabilities and
must be able to exchange information and detect each other. In
particular, Buzz is based on a form of inter-robot communica-
tion called situated communication [27]. This communication
modality is based on a local message broadcast which is
also “situated” because a robot, upon receiving a message, is
capable of detecting the position of the sender with respect to
its own frame of reference. Situated communication forms the

base of a large number of swarm algorithms, including pattern
formation, task allocation, aggregation, exploration, and more.

At first sight, the Buzz syntax resembles JavaScript, Python,
and Lua. This choice was made to ensure a short learning
curve for newcomers. Future work includes Scratch-like vi-
sual programming, to enable a more intituive approach to
swarm programmers for beginners. The primitives offered
by Buzz include classical constructs, such as variable and
function definitions, branches, and loops; and more high-
level constructs designed for spatial and network coordination.
The neighbors construct is a data structure that contains
information about the robots in communication range with
a certain robot. Through this construct, it is possible to
broadcast messages, aggregate local information, filter robots
and their associated information, and spatially interact with
nearby robots. To propagate information globally across the
swarm, Buzz offers the stigmergy construct [28], a light-
weight distributed hash table based on local broadcast and
resistant to severe message loss. The swarm construct of
Buzz allows the programmer to tag robots that respect specific
conditions dictated by the developer, and to assign tasks to
robots as a function of their tags. Robots can be given multiple
tags, and conditions for task assignment can be complex, for
example, require a robot to have multiple tags. The ability to
tag robots conditionally offers a mixed level of granularity, that
enables the developer to express complex swarm algorithms in
a comfortable and concise manner [29]. Two simple algorithms
written in Buzz are reported in Fig. 1.

C. From Software to Hardware

We propose an integrated workflow for behavior specifica-
tion that starts in simulation and seamlessly integrates with real
robots. Our workflow is based on the Buzz run-time framework
and on the ARGoS simulator [30]. ARGoS is a fast, general-
purpose multi-robot simulator that offers a number of unique
features with respect to existing platforms. The most relevant
for the definition of a seamless software-to-hardware workflow
is the possibility of executing multiple physics engines in
parallel in ARGoS. These physics engines can be traditional
software components that simulate the dynamics of the 3D
models involved; or they can be a piece of software integrated
with a motion capture system, such as Vicon, OptiTrack, or
a custom solution based on a webcam and OpenCV11, that
feeds positional data to the ARGoS core [31]. ARGoS and
the Buzz programming language are integrated, thus allowing
for a seamless transition from simulation to real robots.

VII. CONCLUSION

We have reviewed the literature on robot hardware, robot
simulators, and robot tools for applications in education. We
have identified challenges in teaching mobile robotics and
in particular swarm robotics. Our concept to keep students
motivated is based on robot competitions, serious games, and
the gamification of robot simulators. These suggestions are

11https://www.vicon.com/, http://optitrack.com/, https://opencv.org/

https://www.vicon.com/
http://optitrack.com/
https://opencv.org/

Define function to execute upon receiving
information on the distance to the target
function init() {
neighbors.listen("dist_to_target",
function(topic, value, robot_id) {

dist = math.min(dist,
neighbors.get(robot_id).distance +

value)})
}
This function is executed at each time step.
function step() {
Broadcast currently known distance to target
neighbors.broadcast("dist_to_target", dist)

}

(a) Gradient formation.
Group identifiers
AERIAL = 1
TERRESTRIAL = 2
Task for aerial robots
function aerial_task() { ... }
Task for terrestrial robots
function terrestrial_task() { ... }
Create swarm with robots having ’fly_to’
aerial = swarm.create(AERIAL)
aerial.select(fly_to)
Create swarm with robots having ’set_wheel_speed’
terrestrial = swarm.create(TERRESTRIAL)
terrestrial.select(set_wheel_speed)
Assign task to terrestrial robots
terrestrial.exec(terrestrial_task)
Assign task to aerial robots
aerial.exec(aerial_task)

(b) Simple task allocation with heterogeneous robots.

Fig. 1: Two examples of Buzz code.

based on our long experience in teaching mobile robotics,
swarm robotics, and games.

Robotics may have a high impact on industry and society
within the next decades. Hence, it is essential to motivate
students to study robotics-related fields and to keep them
motivated in hands-on approaches to robotics education.

REFERENCES

[1] T. Bock, “The future of construction automation: Technological disrup-
tion and the upcoming ubiquity of robotics,” Automation in Construction,
vol. 59, pp. 113–121, 2015.

[2] H. Hamann, Swarm Robotics: A Formal Approach. Springer, 2018.
[3] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design

elements to gamefulness: defining gamification,” in Proceedings of the
15th international academic MindTrek conference: Envisioning future
media environments. ACM, 2011, pp. 9–15.

[4] D. Djaouti, J. Alvarez, J.-P. Jessel, and O. Rampnoux, “Origins of serious
games,” in Serious games and edutainment applications. Springer,
2011, pp. 25–43.

[5] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of delib-
erate practice in the acquisition of expert performance,” Psychological
Review, vol. 100, no. 3, pp. 363–406, 1993.

[6] J. McGonigal, Reality is broken: Why games make us better and how
they can change the world. Penguin, 2011.

[7] J. R. Anderson, Cognitive Psychology and Its Implications, 8th ed.
Worth Publishers, 2015.

[8] J. M. Keller, “Development and use of the arcs model of instructional
design,” Journal of instructional development, vol. 10, no. 3, p. 2, 1987.

[9] R. Koster, Theory of fun for game design. O’Reilly Media, Inc., 2013.
[10] S. Arnab, T. Lim, M. B. Carvalho, F. Bellotti, S. Freitas, S. Louchart,

N. Suttie, R. Berta, and A. De Gloria, “Mapping learning and game
mechanics for serious games analysis,” British Journal of Educational
Technology, vol. 46, no. 2, pp. 391–411, 2015.

[11] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada, “Thymio II, a
robot that grows wiser with children,” in IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO). IEEE, 2013, pp. 187–193.

[12] H. Moradi and A. Bahri, “The use of “tell me, show me and let me do
it” in teaching robotics,” in Proceedings of the AAAI 2004, 2004, pp.
160–164.

[13] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable
robot system for collective behaviors,” in IEEE International Conference
on Robotics and Automation (ICRA 2012), 2012, pp. 3293–3298.

[14] D. Weintrop and U. Wilensky, “How block-based, text-based, and hybrid
block/text modalities shape novice programming practices,” Interna-
tional Journal of Child-Computer Interaction, 2018.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, 2009.

[16] L. Guyot, N. Heiniger, O. Michel, and F. Rohrer, “Teaching robotics
with an open curriculum based on the e-puck robot, simulations and
competitions,” in Proc. of 2nd Int. Conf. on Robotics in Education (RiE),
R. Stelzer and K. Jafarmadar, Eds. INNOC, 2011, pp. 53–58.

[17] E. Fabregas, G. Farias, E. Peralta, H. Vargas, and S. Dormido, “Teaching
control in mobile robotics with v-rep and a khepera iv library,” in 2016
IEEE Conference on Control Applications (CCA), 2016, pp. 821–826.

[18] M.-T. Chew, S. Demidenko, C. Messom, and G. S. Gupta, “Robotics
competitions in engineering eduction,” in 4th International Conference
on Autonomous Robots and Agents (ICARA). IEEE, 2009, pp. 624–627.

[19] R. Grandi, R. Falconi, and C. Melchiorri, “Robotic competitions: Teach-
ing robotics and real-time programming with lego mindstorms,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 10 598 – 10 603, 2014, 19th
IFAC World Congress.

[20] J. A. Rursch, A. Luse, and D. Jacobson, “IT-adventures: A program to
spark IT interest in high school students using inquiry-based learning
with cyber defense, game design, and robotics,” IEEE Transactions on
Education, vol. 53, no. 1, pp. 71–79, 2010.

[21] S. M. Ackerman, G. M. Fricke, J. P. Hecker, K. M. Hamed, S. R. Fowler,
A. D. Griego, J. C. Jones, J. J. Nichol, K. W. Leucht, and M. E. Moses,
“The swarmathon: An autonomous swarm robotics competition,” arXiv
preprint arXiv:1805.08320, 2018.

[22] H. Hamann and H. Wörn, “A framework of space-time continuous
models for algorithm design in swarm robotics,” Swarm Intelligence,
vol. 2, no. 2-4, pp. 209–239, Oct. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11721-008-0015-3

[23] S. von Mammen, “Self-organisation in games, games on self-
organisation,” in Games and Virtual Worlds for Serious Applications
(VS-Games), 8th International Conference on. IEEE, 2016, pp. 1–8.

[24] D. Tarapore, P. U. Lima, J. Carneiro, and A. L. Christensen, “To
err is robotic, to tolerate immunological: fault detection in multirobot
systems,” Bioinspiration & biomimetics, vol. 10, no. 1, p. 016014, 2015.

[25] C. E. Irvine and M. Thompson, “Teaching objectives of a simulation
game for computer security,” Naval Postgraduate School, Monterey, CA,
USA, Tech. Rep., 2003.

[26] C. Pinciroli and G. Beltrame, “Buzz: An extensible programming
language for heterogeneous swarm robotics,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2016). Los Alamitos, CA: IEEE Computer Society Press,
October 2016, pp. 3794–3800.

[27] K. Støy, “Using situated communication in distributed autonomous
mobile robots,” in Proceedings of the 7th Scandinavian Conference on
Artificial Intelligence. IOS Press, 2001, pp. 44–52.

[28] C. Pinciroli, A. Lee-Brown, and G. Beltrame, “A tuple space for data
sharing in robot swarms,” in 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (BICT 2015).
ACM Digital Library, 2015.

[29] C. Pinciroli and G. Beltrame, “Swarm-oriented programming of dis-
tributed robot networks,” IEEE Computer, vol. 49, no. 12, pp. 32–41,
December 2016.

[30] C. Pinciroli et al., “ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp. 271–295,
2012. [Online]. Available: http://dx.doi.org/10.1007/s11721-012-0072-5

[31] A. Reina, M. Salvaro, G. Francesca, L. Garattoni, C. Pinciroli,
M. Dorigo, and M. Birattari, “Augmented reality for robots: virtual
sensing technology applied to a swarm of e-pucks,” in 2015 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2015)). Los
Alamitos, CA: IEEE Computer Society Press, 2015, pp. 1–6, paper ID
sB p3.

http://dx.doi.org/10.1007/s11721-008-0015-3
http://dx.doi.org/10.1007/s11721-012-0072-5

	Introduction
	Related Work
	State of the Art in Teaching Robotics
	Robots for Education
	Robot Simulators and Tools for Education
	Programming Languages
	Robot Simulation Environments

	Robot Competitions

	Challenges
	Proposed Concept
	Bridging the Reality Gap
	Learning Phases
	Bridging with Badges, Driving with Competition
	Non-linear Gameplay
	Final Grounds with Augmented Reality

	Tool Set: Robots in Hardware and Software for Robots
	Robot Hardware
	Robot Software
	From Software to Hardware

	Conclusion
	References

